![]() | ![]() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 | |
Подводя итог, нужно отметить, что мир более детерминирован, чем это сегодня принято считать. Индетерминированность так же, как и случайность, не есть принцип устройства природы, а всего лишь признак неполноты нашего знания, его относительность. Поэтому ряд ведущих физиков не согласен с принципиальным индетерминизмом, они рассматривают случайность как следствие не учета объективно существующих факторов. Так, Д.Бом в работе «Причинность и случайность в современной физике» (1959) [4] указывает, что в экспериментах всегда присутствуют несущественные неучтенные факторы, искажающие результаты, что и проявляется как случайность. Однако следует отметить, что Бом указал лишь на одну сторону проявления случайности. Не менее важной является другая сторона, связанная с тем, что для проявления эффекта на уровне макропроцесса необходимо накопление изменений на уровне микропроцесса. Данное обстоятельство связано со всякого рода нелинейностями, зонами нечувствительности и обратными связями внутренних регуляторов явлений и пр. Хорошим примером здесь является образование вихрей в потоке жидкости при некотором соотношении между размерами тела, скоростью и вязкостью среды, называемом числом Рейнольдса. До значения этого числа, равного 1000, вихри не образуются совсем, от 1000 до 2000 течение становится турбулентным, но вихри неустойчивы, а по достижении числом Рейнольдса значения 2000 вихри становятся устойчивыми. Если при этом аппаратура построена так, что она способна обнаруживать только вихревые образования, то исследователь мог бы сделать вывод о том, что никаких движений материи на более глубинных уровнях, чем вихри, не существует в природе и что образование вихрей носит случайный характер, хотя видно, что это на самом деле не так. Советский ученый А.К.Тимирязев в пятидесятые годы в книге «Кинетическая теория материи» [9] отмечал, что «теория» принципиально не наблюдаемых величин не выдерживает ни малейшей критики. Она опровергается всей историей науки. Было время, когда говорили, что молекулы, атомы и электроны принципиально не наблюдаемы. Но вот спинтарископ Крукса, счетчик Гейгера, камера Вильсона, опыты с броуновским движением, если не сделали все эти «принципиально не наблюдаемые» величины видимыми, то, во всяком случае, они прекрасно показывают действия отдельных частиц и молекулярных движений. Соединение интерферометра с телескопом позволило измерять диаметры звезд, что казалось раньше «принципиально недоступным». А в современном электронном микроскопе видны не только молекулы белка, обладающего очень большими молекулами, но и отдельные атомы! Про Солнце говорилось, что никогда не станет известным, из чего оно состоит. Это было сказано как раз накануне открытия гелия... К этому следует добавить, что современные данные об устройстве микромира со всей определенностью говорят о том, что существуют не только микрочастицы уровня элементарных частиц вещества, но и значительно более мелкие «кирпичики» мироздания. Иначе чем, как не общностью строительного материала, можно объяснить тот факт, что при соударении микрочастиц они превра- | щаются в другие микрочастицы, и даже возникла поговорка о том, что «каждая частица состоит из всех остальных»? Сторонники динамического подхода не признают феноменологического принципа «действия на расстоянии», по которому взаимодействие тел происходит без участия промежуточной среды, и придерживаются точки зрения близко-действия, то есть передачи энергии взаимодействий путем непосредственной передачи энергии от одной точки пространства к другой, непосредственно к ней примыкающей. Но для такой передачи без среды - носителя энергии взаимодействий было уже не обойтись. «Если энергия покинула одно тело и не достигла второго, значит, должна существовать среда, в которой она находится в это время»,- полагал Дж.К.Максвелл. Именно использовав представление об эфире, он вывел свои знаменитые уравнения электромагнитного поля, которыми мы пользуемся более ста лет и без которых были бы немыслимы ни электротехника, ни радиотехника, ни электроника. Сторонники динамического подхода придерживаются детерминизма, закономерности в любом явлении. Знание механизма явлений, считают они, дает нам возможность понять причины явлений, а значит, и следствия, из них вытекающие. Мир бесконечно сложен, и все причины мы знать со всеми деталями, вероятно, не сможем. Однако всегда можно выделить главные, существенные детали механизма, а остальные постигать постепенно, по мере необходимости уточнения. Но раз мы предполагаем, что способны найти этот механизм, то тем самым считаем, что сам этот механизм окажется нам понятен. А понятен он тогда, когда он аналогичен чему-то такому, что мы уже знаем и понимаем. Отсюда вытекает громадная роль аналогий в деле познания природы. Английский физик Дж.Рэлей (1842-1919), придавая вопросам аналогий и подобия в физических явлениях особое значение, говорил по этому поводу: «Я часто удивляюсь тому незначительному вниманию, которое уделяется великому принципу «подобия» даже со стороны крупных ученых. Нередко случается, что результаты кропотливых исследований преподносятся как вновь открытые «законы», которые, тем не менее, можно было получить априорно в течение нескольких минут». Все это тем более правильно, что весь опыт естествознания убеждает нас в том, что каждый предмет состоит из частей, и свойства предмета определяются свойствами этих частей в их взаимосвязи. Вот тогда объяснение явления и будет сведено к прослеживанию причинно-следственных взаимоотношений между его частями. История показывает, что прорыв в науке происходил тогда, когда осуществлялся переход к новым «кирпичикам», свойства которых определялись на основании обобщения свойств уже освоенных материальных образований. Свойства молекул были определены на основании изучения свойств веществ, свойства атомов вытекали из свойств молекул при их взаимодействиях, свойства «элементарных частиц» вещества - из свойств атомов. И сейчас свойства «новых кирпичиков» мироздания - амеров могут быть определены на основании знания поведения «элементарных частиц» вещества при их взаимодействи- |