![]() | ![]() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 | |
результаты частично случайны. Таким образом, случайность выступает не как принцип устройства природы, на чем настаивает современная теоретическая физика, а как результат неполного знания. Целесообразно напомнить утверждение Ф.Энгельса: «...но где на поверхности происходит игра случая, там сама эта случайность оказывается подчиненной-внутренним скрытым законам. Все дело в том, чтобы открыть эти законы». Любое физическое явление есть следствие внутренних процессов, зачастую неощутимых на достигнутом уровне развития физики, поэтому признание факта причинности имеет принципиальное значение, ибо на всех этапах познания утверждает наличие внутренних механизмов явлений и принципиальную возможность их раскрытия. Поскольку все исследования производятся с помощью измерительных устройств, то существенной стороной этого вопроса является проблема погрешностей измерений, которые всегда состоят из трех частей: - методологической погрешности; - погрешности измерительного прибора; - погрешности, вносимой измерительным прибором в измеряемую величину. Методологическая погрешность связана с выбором метода измерения. Измерения редко бывают прямыми, типа, например, измерения линейкой размеров предмета. Обычно измеряется множество функционально связанных друг с другом параметров, полученные результаты косвенно содержат в себе и интересующую величину. Так, при определении массы заряженной частицы получается сложная зависимость между траекторией частицы, напряженностью электрического и магнитного полей, ее зарядом и массой. Неудачный метод создания любого из полей приведет к большим ошибкам, тем более что в процесс измерения вмешивается множество неучтенных факторов, искажающих результаты измерений. Примеры второй части погрешности всем очевидны, так как сделать измерительное устройство абсолютно точным не представляется возможным. Однако обычно удается подобрать или создать прибор, точность которого оказывается удовлетворительной для конкретного случая. Примером третьей части погрешности является измерение напряжения вольтметром в электрической схеме: подключение вольтметра снижает напряжение в исследуемой точке схемы на некоторую величину. Для того чтобы сделать эту погрешность как можно меньше, сопротивление вольтметра должно быть как можно больше. Но это связано с дополнительными трудностями, поэтому бесконечно повышать сопротивление вольтметра нельзя. Нужно выбрать такое значение сопротивления, при котором вносимая погрешность окажется меньше некоторой допустимой величины. Таким образом, точность измерения принципиально повысить можно, хотя реально это не всегда удается, и если для исследований в микромире этого пока сделать не удалось, но не потому, что так устроена природа, а потому, что такие приборы еще не изобрели. Однако если знать, что этого сделать нельзя, то тогда таких приборов никогда не будет создано, а если знать, что принципиально это возможно, то тогда открывается дорога для поисков, и проблема когда-нибудь будет решена. | Подводя итог, нужно отметить, что мир более детерминирован, чем это сегодня принято считать. Индетерминированность так же, как и случайность, не есть принцип устройства природы, а всего лишь признак неполноты нашего знания, его относительность. Поэтому ряд ведущих физиков не согласен с принципиальным индетерминизмом, они рассматривают случайность как следствие не учета объективно существующих факторов. Так, Д.Бом в работе «Причинность и случайность в современной физике» (1959) [4] указывает, что в экспериментах всегда присутствуют несущественные неучтенные факторы, искажающие результаты, что и проявляется как случайность. Однако следует отметить, что Бом указал лишь на одну сторону проявления случайности. Не менее важной является другая сторона, связанная с тем, что для проявления эффекта на уровне макропроцесса необходимо накопление изменений на уровне микропроцесса. Данное обстоятельство связано со всякого рода нелинейностями, зонами нечувствительности и обратными связями внутренних регуляторов явлений и пр. Хорошим примером здесь является образование вихрей в потоке жидкости при некотором соотношении между размерами тела, скоростью и вязкостью среды, называемом числом Рейнольдса. До значения этого числа, равного 1000, вихри не образуются совсем, от 1000 до 2000 течение становится турбулентным, но вихри неустойчивы, а по достижении числом Рейнольдса значения 2000 вихри становятся устойчивыми. Если при этом аппаратура построена так, что она способна обнаруживать только вихревые образования, то исследователь мог бы сделать вывод о том, что никаких движений материи на более глубинных уровнях, чем вихри, не существует в природе и что образование вихрей носит случайный характер, хотя видно, что это на самом деле не так. Советский ученый А.К.Тимирязев в пятидесятые годы в книге «Кинетическая теория материи» [9] отмечал, что «теория» принципиально не наблюдаемых величин не выдерживает ни малейшей критики. Она опровергается всей историей науки. Было время, когда говорили, что молекулы, атомы и электроны принципиально не наблюдаемы. Но вот спинтарископ Крукса, счетчик Гейгера, камера Вильсона, опыты с броуновским движением, если не сделали все эти «принципиально не наблюдаемые» величины видимыми, то, во всяком случае, они прекрасно показывают действия отдельных частиц и молекулярных движений. Соединение интерферометра с телескопом позволило измерять диаметры звезд, что казалось раньше «принципиально недоступным». А в современном электронном микроскопе видны не только молекулы белка, обладающего очень большими молекулами, но и отдельные атомы! Про Солнце говорилось, что никогда не станет известным, из чего оно состоит. Это было сказано как раз накануне открытия гелия... К этому следует добавить, что современные данные об устройстве микромира со всей определенностью говорят о том, что существуют не только микрочастицы уровня элементарных частиц вещества, но и значительно более мелкие «кирпичики» мироздания. Иначе чем, как не общностью строительного материала, можно объяснить тот факт, что при соударении микрочастиц они превра- |