![]() | ![]() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 | |
206 Глава 7. Поскольку проявление физических явлений есть следствие внутренних процессов, зачастую неощутимых на достигнутом уровне развития физики, то признание факта причинности имеет принципиальное значение, ибо заранее на всех этапах познания утверждает наличие внутренних механизмов явлений и принципиальную возможность их раскрытия. Любое физическое явление есть следствие внутренних процессов, зачастую неощутимых на достигнутом уровне развития физики, поэтому признание факта причинности имеет принципиальное значение, ибо на всех этапах познания утверждает наличие внутренних механизмов явлений и принципиальную возможность их раскрытия. Поскольку все исследования производятся с помощью измерительных устройств, то существенной стороной этого вопроса является проблема погрешностей измерений, которые всегда состоят из трех частей - методологической погрешности, погрешности измерительного прибора; погрешности, вносимой измерительным прибором в измеряемую величину. Методологическая погрешность связана с выбором метода измерения. Измерения редко бывают прямыми, типа, например, измерения линейкой размеров предмета. Обычно измеряется множество функционально связанных друг с другом параметров, полученные результаты косвенно содержат в себе и интересующую величину. Так при определении массы заряженной частицы получается сложная зависимость между траекторией частицы, напряженностью электрического и магнитного полей, ее зарядом и массой. Неудачный метод создания любого из полей приведет к большим ошибкам, тем более что в процесс измерения вмешивается множество неучтенных факторов, искажающих результаты измерений. Примеры второй части погрешности всем очевидны, так как сделать измерительное устройство абсолютно точным не представляется возможным. Однако обычно удается подобрать или создать прибор, точность которого оказывается удовлетворительной для конкретного случая. Примером третьей части погрешности является измерение напряжения вольтметром в электрической схеме: подключение вольтметра снижает напряжение в исследуемой точке схемы на некоторую величину. Для того чтобы сделать эту погрешность как можно меньше, сопротивление вольтметра должно быть как можно | Некоторые положения материалистической философии науки 20^7 больше. Но это связано с дополнительными трудностями, поэтому бесконечно повышать сопротивление вольтметра нельзя. Нужно выбрать такое значение сопротивления, при котором вносимая погрешность окажется меньше некоторой допустимой величины. Таким образом, точность измерения принципиально повысить можно, хотя реально это не всегда удается, и если для исследований в микромире этого пока сделать не удалось, то не потому, что так устроена природа, а потому, что такие приборы еще не изобрели. Однако если знать, что этого сделать нельзя, то тогда таких приборов никогда не будет создано, а если знать, что принципиально это возможно, то тогда открывается дорога для поисков, и проблема когда-нибудь будет решена. Подводя итог, нужно отметить, что мир более детерминирован, чем это сегодня принято считать. Индетерминированность, так же как и случайность не есть принцип устройства природы, а всего лишь признак неполноты нашего знания, его относительность. Поэтому ряд ведущих физиков не согласен с принципиальным индетерминизмом, они рассматривают случайность как следствие не учета объективно существующих факторов. Не менее важной является другая сторона, связанная с тем, что для проявления эффекта на уровне макропроцесса необходимо накопление изменений на уровне микропроцесса. Данное обстоятельство связано со всякого рода нелинейностями, зонами нечувствительности и обратными связями внутренних регуляторов явлений и пр. Хорошим примером является образование вихрей в потоке жидкости при некотором соотношении между размерами тела, скоростью и вязкостью среды, называемом числом Рейнольдса. До значения этого числа, равного 1000, вихри не образуются совсем, от 1000 до 2000 течение становится турбулентным, но вихри неустойчивы, а по достижении числом Рейнольдса значения 2000 вихри становятся устойчивыми. Если при этом аппаратура только для обнаружения вихрей, то исследователь может сделать вывод о том, что никаких движений материи на более глубинных уровнях, чем вихри, не существует в природе и что образование вихрей носит случайный характер. Советский ученый А.К.Тимирязев в книге «Кинетическая теория материи» [15, с. 5] отмечал, что «теория» принципиально не |