Ацюковский В.А. Материализм и релятивизм. М.:Петит, 2009. — 258 с. — ISBN 5-85101-060-6

В начало   Другие форматы   <<<     Страница 79   >>>

  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79 80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148  149  150  151  152  153  154  155  156  157  158  159  160  161  162  163  164  165  166  167  168  169  170  171  172  173  174  175  176  177  178  179  180  181  182  183  184  185  186  187  188  189  190  191  192  193  194  195  196  197  198  199  200  201  202  203  204  205  206  207  208  209  210  211  212  213  214  215  216  217  218  219  220  221  222  223  224  225  226  227  228  229  230  231  232  233  234  235  236  237  238  239  240  241  242  243  244  245  246  247  248  249  250  251  252  253  254  255  256  257  258 

Чем отличается квантовая механика от классической?

79

Что происходит с рассеянием молекул при т > 4тян? Оказалось, что существует несколько типов рассеяния - диффузное, лепестковое и радужное. И все три типа рассеяния не имеют отношения к волновым процессам, следовательно, и к волнам де Бройля.

Диффузное рассеяние связано с адсорбцией атомов или молекул поверхностью кристалла и является неупругим рассеянием.

Лепестковое рассеяние, впервые наблюдавшееся Цалем в 1931 г. для паров металлов, а затем для инертных газов Ne, Аг существенно отличается от зеркального и от дифракционного рассеяний, но оно также связано с неупругими процессами. В обзоре Гудмана отмечено, что теоретическое рассмотрение механизма лепесткового рассеяния с использованием квантовых законов оказалось безуспешным. Необходимо отметить, что рассеяние Не приводит к дифракционной картине в той же установке, где рассеяние Аг является лепестковым.

Радужное рассеяние характеризуется двумя максимумами интенсивности, положение которых не совпадает с положением зеркального или дифракционного максимумом. Согласно обзору Гудмана, возникновение радужного рассеяния связано в классическом рассмотрении с периодичностью потенциала поверхности кристалла. Квантовая интерпретация радужного рассеяния сводится к предположению, что два наблюдаемых радужных максимума интенсивности являются огибающей множества дифракционных максимумов, которые незаметны из-за слабого их разрешения в опытах. Однако это предположение не доказано прямыми экспериментами, и к тому же существуют и другие интерпретации радужных максимумов, например, с помощью одно- или двукратного столкновения атомов поверхностью мишени.

Согласно обзору Гудмана, дифракционные явления на поверхности металлов до сих пор наблюдались только для легких газов, например, для Не на вольфраме, однако пучки Не при рассеянии на той же структуре приводили только к классическим радужным эффектам.

Для молекул, собственный геометрический размер которых соответствовал длине волны де Бройля, например, у бутана С4Н|0, уравнение де Бройля не проверялось совсем.

Таким образом, из экспериментов следует, что справедливость формулы де Бройля твердо установлена только в узком диапазоне масс микрочастиц.

80

Глава 3.

Л.А.Шипицын в работе [10] показал, что волны де Бройля имеют в гидромеханике аналог - так называемую вихревую дорожку Кармана. При обтекании тел потоком жидкости или газа при определенных условиях наблюдается самопроизвольное и периодическое образование вихрей на поверхности тела. Отделение вихрей от тела является причиной возникновения периодически меняющейся силы, перпендикулярной направлению потока. Частота срыва вихря определяется очень простой зависимостью

v = 0,2 v!d

где 0,2 - число Струхаля; v - относительная скорость тела; d -некоторая длина, характеризующая размер тела.

Приведенная зависимость справедлива в широком диапазоне чисел Рейнольдса Re = vrf///, где // -кинематическая вязкость среды, причем Ю2 < Re < 106.

По данным Рожко [10], при Re от 3,5-106 до 107 вихреобразование вновь возобновляется. Таким образом, с движущимся в среде телом связан некоторый волновой процесс, аналогичный тому, как с движущейся в среде микрочастицей связаны волны де Бройля.

Л.А.Шипицыным рассчитано, что если число Рейнольдса меняется в интервале от 102 до 106. то и масса микрочастиц, для которых может наблюдаться волновой процесс, может меняться лишь в 104 раз. Если минимальное значение массы, предположим, соответствует электрону, то верхний предел составит только 5 нуклонных масс, а с учетом данных Рожко этот предел возрастает до 150-200 нуклонных масс. Внутри же этого интервала существует небольшой интервал масс микрочастиц, не обладающих волновыми свойствами. Здесь, правда, следует сделать оговорку: все сказанное относится не столько к собственно массам микрочастиц, сколько к произведению этих масс на скорость микрочастиц в конкретных экспериментах, т. е. одни и те же частицы будут вести себя по-разному в зависимости от их скорости.

Отсюда следует, что предложение Луи де Бройля о том, что все тела обладают волновыми свойствами, неправомерно и представляет собой попытку распространения за допустимые пределы свойств, обнаруженных в довольно узкой области масс и скоростей. Во-вторых, вновь поднимается вопрос о существовании среды, заполняющей внутри- и межатомное пространство, и об ее свойствах, в частности об



Hosted by uCoz