Ацюковский В.А. Материализм и релятивизм. М.:Петит, 2009. — 258 с. — ISBN 5-85101-060-6

В начало   Другие форматы   <<<     Страница 25   >>>

  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25 26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148  149  150  151  152  153  154  155  156  157  158  159  160  161  162  163  164  165  166  167  168  169  170  171  172  173  174  175  176  177  178  179  180  181  182  183  184  185  186  187  188  189  190  191  192  193  194  195  196  197  198  199  200  201  202  203  204  205  206  207  208  209  210  211  212  213  214  215  216  217  218  219  220  221  222  223  224  225  226  227  228  229  230  231  232  233  234  235  236  237  238  239  240  241  242  243  244  245  246  247  248  249  250  251  252  253  254  255  256  257  258 

Структура и основные положения теоретической физики    25

где h - постоянная величина (постоянная Планка).

Противоречия планетарной модели атома разрешил Бор в 1913 г., выдвинувший постулат о стационарности атомных орбит. Чтобы не излучать энергию в пространство, электроны должны занимать каждый одну из «разрешенных» стационарных орбит. Тогда излучения не будет, и атом станет устойчивым.

Важнейшим положением в квантовой механике является представление о волновой функции, объединяющей ансамбль материальных точек, находящихся в силовом поле. Волновой функции приписывается смысл амплитуды вероятности, так что квадрат ее модуля есть плотность вероятности нахождения частицы в данном состоянии. При этом координаты и импульс каждой частицы взаимосвязаны в пределах принципа неопределенности Гейзенберга, согласно которому координаты и импульс, а также энергия и время не могут иметь точных значений.

В квантовой механике момент импульса, его проекция на выбранное направление, а также энергия при движении в ограниченной области пространства могут принимать лишь ряд дискретных значений. С помощью квантовой механики была построена теория атомов, теория химической связи, теория альфа-распада ядер, квантовая теория рассеяния, зонная теория твердого тела. Квантовая теория легла в основу теории квантовой электроники, приведшей к созданию квантовых генераторов - лазеров и мазеров. Таким образом, налицо полезность теории для решения некоторых прикладных задач.

Подобно тому, как на основе классических законов движения отдельных частиц была создана теория поведения большой их совокупности - классическая статистика, так на основе квантовых законов движения частиц была построена квантовая статистика. Квантовая статистика описывает поведение макроскопических объектов, поскольку считается, что классическая механика не применима для описания движения слагающих их частиц. А квантовые свойства микрообъектов отчетливо проявляются в свойствах макроскопических тел.

Математический аппарат квантовой механики существенно отличается от аппарата классической статистики, так как некоторые физические величины в квантовой механике могут принимать только дискретные значения. Однако само содержание статистической теории равновесных состояний не претерпело глубоких изменений. В

26

Глава 1.

квантовой статистике, как и вообще в квантовой теории систем многих частиц, важную роль играет принцип тождественности одинаковых частиц. Система таких частиц с нулевым или целочисленным спином -бозонов описывается статистикой Бозе-Эйнштейна, системы с частицами с полуцелым спином - фермионами подчиняются принципу Паули, а системы этих частиц описываются статистикой Ферми-Дирака.

Развитие квантовой теории привело созданию квантовой теории поля КТП [11], в которой квантовые принципы распространены на физические поля, рассматриваемые как системы с бесконечным числом степеней свободы. В квантовой теории поля отражен принцип корпускулярно-волнового дуализма частиц, а сами частицы описываются с помощью квантованных полей, представляющих собой совокупность математических операторов (физические поля представляют собой набор математических операций?!) рождения и поглощения частиц в различных квантовых состояниях. Взаимодействие квантованных полей приводит к различным процессам испускания, поглощения и превращения частиц. Любой процесс в КТП рассматривается как уничтожение одних частиц в определенных состояниях и появление других частиц в новых состояниях. Сам физический процесс уничтожения и появления частиц в КТП не рассматривается.

Первоначально КТП была построена применительно к взаимодействию электронов, позитронов и фотонов, в таком виде теория получила наименование квантовой электродинамики [12-14]. Согласно квантовой электродинамике взаимодействие между заряженными частицами осуществляется путем обмена фотонами, причем электрический заряд е частицы представляет собой константу, характеризующую связь поля заряженных частиц с электромагнитным полем - полем фотонов. На этой основе Ферми в 1974 г. был описан р-распад радиоактивных ядер как частный случай слабого взаимодействия. Согласно КТП такой процесс можно представить как результат контактного взаимодействия в одной точке квантованных полей, соответствующих четырем частицам со спином Vi : протону, нейтрону, электрону и антинейтрино, т. е. четырехфермионным взаимодействиям.

По современным представлениям КТП является основой для описания элементарных взаимодействий, существующих в природе. Однако из-за бесконечного числа степеней свободы у поля



Hosted by uCoz