![]() | ![]() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 | |
Попытки создания не традиционных физических теорий 103 соответствии с эмпирическими данными о ядре. Она не выведена из «начальных принципов». Существуют еще некоторые модели атомных ядер — сверхтекучая модель, в соответствии с которой ядро рассматривается состоящим из сверхтекучей ядерной жидкости (Н.Н.Боголюбов, 1958), вибрационная модель, учитывающая коллективные возбуждения сферических ядер путем рассмотрения поверхностных и квадрупольных колебаний жидкой капли, кластерная модель и др. Все ядерные модели играют роль более или менее вероятных рабочих гипотез. «Последовательное же объяснение наиболее важных свойств ядер на прочной основе физических принципов, - отмечает И.С.Шапиро [1], - и данных о взаимодействии нуклонов остается пока одной из нерешенных фундаментальных проблем современной физики». Хотелось бы обратить внимание на некоторые особенности разработки рассмотренных выше ядерных моделей и исследований процессов в атомном ядре. Ядерная теория и ядерные модели возникли и уточняются по мере накопления эмпирических данных о ядрах и ядерных реакциях. Поскольку эти данные непрерывно пополняются, то и модели, и теории соответственно надстраиваются. Эти надстройки становятся все сложнее, теории все запутаннее. Привлекаются все более абстрактные представления, не имеющие к реальности никакого отношения, и куда все это придет, и что все это даст - никто не имеет представления. Не ставя перед собой задачи понять внутреннюю структуру нуклонов, физическую природу сильного взаимодействия, выбросив из рассмотрения среду, окружающую нуклоны, и строительный материал самих нуклонов, метафизически исповедуя всевозможные «принципы» и «правила», выведенные из планетарной модели электронных оболочек атома, но, беспредельно распространяя их на совершенно иные условия - условия атомного ядра, атомная физика в познании ядра обрекла себя на тупик. К этому еще прибавилась «принципиальная» безразмерность и бесструкгурность элементарных частиц вещества. Стремление хоть как-то разобраться в устройстве элементарных частиц вещества вызвало появление моделей этих частиц, среди которых наибольшее признание получила кварковая модель. В соответствии с кварковой моделью, разработанной в 1964 г. американским физиком Гелл-Маном и австрийским физиком Цвейгом, | 104 Глава 4. все элементарные частицы состоят из кварков - истино элементарных частиц, элементарнее которых уже ничего нет. Сначала, но мысли авторов модели кварков было всего три: р, п и X. Этим кваркам были приписаны основные свойства: у всех них спин равен 1/2, но далее кварки имеют различные дробные значения электрического заряда Q, странности s, барионного заряда В и гиперзаряда у, не встречающихся ни у одной из реально наблюдаемых элементарных частиц вещества. Любые частицы, по мысли авторов кварковой модели, состоят из наборов кварков, например, протон р состоит из двух /жварков и одного /7-кварка; р = {ррп)\ нейтрон п - из двух /7-кварков и одного;>кварка: п = (рпп) и т. д. Однако вскоре выяснилось, что перечисленных кварков недостаточно, и появились соответствующие антикварки - р"9 X Вскоре и этого оказалось недостаточно, поэтому каждому кварку дополнительно стали приписывать «цвета» - каждому кварку по три «цвета»: а = 1, 2, 3, т. е. каждый тип кварка должен быть представлен тремя разновидностями. Затем у кварков появились «запахи». При этом не исключается появление и других разновидностей кварков, так что общее число кварков, этих «истинно элементарных частиц» становится соизмеримым с числом элементарных частиц вещества. А, кроме того, становится непонятным, что можно отнести к элементарным частицам, а что нельзя. Например, резонансы, т. е. особо короткоживущие частицы - это элементарные частицы или какие-то переходные процессы? К этому надо добавить, что кварковая теория никак не объясняет, почему кварки вообще существуют на свете и обладают необычными свойствами, не наблюдаемыми ни у каких других частиц микромира. По кварковой модели масса каждой элементарной частицы вещества определяется через ее энергию, а энергия частиц складывается из энергий масс кварков и энергий связей: ^ £ niKn — X £св, Здесь слева энергия массы элементарной частицы вещества, а справа - энергия масс, составляющих частицу кварков, и энергия связи кварков между собой. Масса каждого кварка в 5 раз и более больше массы прогона, составленный из трех кварков протон обладает не пятнадцатью массами, а только одной, потому что остальные |