![]() | ![]() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 | |
Чем отличается квантовая механика от классической/ 83 г у - у/ [со (t--] при частоте колебаний со = Е - и(г) / #, при этом сущность ^/-функции как физической величины может быть самой разнообразной. Эта сущность не может быть непосредственно установлена фактом удовлетворения уравнению Шредингера точно так же, как и сущность любой физической величины не может быть однозначно установлена на основе удовлетворения ее какому бы то ни было физическому уравнению. Это обусловлено тем, что одинаковыми уравнениями описываются самые разнообразные процессы. В связи тем, что в квантовой механике не рассматривается структура электрона и природа всех его параметров, то соответственно не может рассматриваться и действительно не рассматривается механизм, обеспечивший появление электрона в той или иной точке пространства в тот или иной момент времени. Но поскольку поведение электрона во внутриатомном пространстве требует описания, остается лишь один путь - подобрать некоторый абстрактный математический аппарат, которым было бы удобно пользоваться при решении конкретных задач. Такой математический аппарат и был подобран: это математический аппарат теории вероятностей. Как известно, в настоящее время принята трактовка квадрата ///-функции как плотности вероятности нахождения электрона в данной точке пространства внутри атома. Такая трактовка в принципе игнорирует физику процесса и никак не объясняет, почему же, по каким причинам электрон, имеющий точечные размеры, в каждой точке внутриатомного пространства появляется именно с такой вероятностью. Трактовка волновой функции как плотности вероятности принципиально снимает вопрос о сути внутреннего устройств тома и создает впечатление о том, что никакого внутреннего механизма, регулирующего положение электрона в атоме, нет вообще. При этом даже такие основополагающие моменты, как стационарность орбит электронов, никакого объяснения не получают. Не считать же за объяснение стационарности предложенную Бором замкнутость орбит | 84 Глава 3. или целое число волн, укладывающихся на орбите! А почему, например, орбита не стационарна, если на ней укладывается не целое число волн? Почему такая система неустойчива? Чем физически отличается целое число волн от не целого, почему при не целом числе волн орбита становится неустойчивой? На все это ответа нет. Необходимо заметить, что полезность уравнения Шредингера вовсе не ставится под сомнение. Это уравнение позволило предсказать большое число явлений атомной физики, вычислить наблюдаемые характеристики атомных систем, в том числе уровни энергии атомов, изменение спектров атомов под влиянием электрических и магнитных полей и т. п. Все это говорит о том, что уравнение Шредингера реально отражает природные внутриатомные процессы и находится в согласии с физической реальностью. Но философская трактовка его решений крайне неудачна. Если волновая функция - это только «плотность вероятности», то ни о каком внутреннем механизме, регулирующем положение электрона в атоме, не может быть и речи, такого механизма просто нет, и ни в чем разбираться не надо, потому что это все равно бесполезно. Такая трактовка абсолютизирует наше незнание микромира и накладывает ограничения на познавательные возможности человека. Поэтому, если принимать во внимание релятивизм, относительность наших знаний, следует поискать другой путь, такой, который позволил бы развиваться нашим представлениям о структуре атома. А это автоматически означат необходимость отказа от вероятностной трактовки волновой функции. Целесообразно вспомнить, что некоторые исследователи давно обратили внимание на возможность иной, не вероятностной трактовки волновой функции. Еще в 1926 г. сразу после статьи Шредингера Маделунгом было показано, что уравнение Шредингера отражает собой стационарные потоки некоей среды. Соответствующие преобразования позволяют представить уравнение Шредингера в гидродинамической форме, в которой все основные моменты квантовой модели атома сохранены. В своей статье Маделунг говорит о «гидродинамике континуума», оставляя открытым вопрос о природе этого конти-нуума. При этом у него появляются все гидромеханические пара-метры этого континуума, в том числе и массовая плотность [6], На возможность трактовки волновой функции как массовой плотности внутриатомной среды в 1940 г. обратил внимание Эддингтон. Он заметил, что «...более последовательным и созвучным духу |