Ацюковский В.А. Материализм и релятивизм. М.:Петит, 2009. — 258 с. — ISBN 5-85101-060-6

В начало   Другие форматы   <<<     Страница 27   >>>

  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27 28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148  149  150  151  152  153  154  155  156  157  158  159  160  161  162  163  164  165  166  167  168  169  170  171  172  173  174  175  176  177  178  179  180  181  182  183  184  185  186  187  188  189  190  191  192  193  194  195  196  197  198  199  200  201  202  203  204  205  206  207  208  209  210  211  212  213  214  215  216  217  218  219  220  221  222  223  224  225  226  227  228  229  230  231  232  233  234  235  236  237  238  239  240  241  242  243  244  245  246  247  248  249  250  251  252  253  254  255  256  257  258 

Структура и основные положения теоретической физики

27

взаимодействия частиц - квантов поля - эта теория приводит к математическим трудностям, которые до сих пор не удалось преодолеть. В квантовой электродинамике любую задачу можно решить приближенно, и результаты расчетов основных эффектов находятся в хорошем согласии с экспериментом. Тем не менее, положение в этой теории нельзя считать благополучным, так как для ряда физических величин - массы, электрического заряда при вычислениях по теории возмущений получаются бесконечные выражения (расходимости). Их исключают искусственно, используя так называемую технику перенормировок, заключающуюся в том, что бесконечно большие значения для массы и заряда частиц заменяются их наблюдаемыми значениями. Это означает, что поскольку здесь теория ничего предсказать не может, несмотря на всю свою стройность, там, где ею практически пользоваться нельзя, от нее просто отказываются. Разработанные в квантовой электродинамике методы в дальнейшем пытались применить для расчетов процессов слабого и сильного ядерных взаимодействий, однако и здесь возникали некоторые проблемы.

После экспериментально установленного факта не сохранения свойства зеркальной симметрии микрочастиц - пространственной четности в процессах слабого взаимодействия была предложена так называемая универсальная теория слабых взаимодействий [15]. Однако в отличие от квантовой электродинамики эта теория не позволяла вычислить поправки в высших порядках теории возмущений, т. е. теория оказалась не перенормируемой. Успех в перенормировке был достигнут на основе так называемых калибровочных теорий. Согласно этим теориям в модели, объединяющей слабые и электромагнитные взаимодействия, наряду с фотоном - переносчиком электромагнитных взаимодействий между заряженными частицами должны существовать переносчики слабых взаимодействий - так называемые промежуточные векторные бозоны. Однако в эксперименте эти частицы обнаружены не были. Справедливость новой едином теории электромагнитных и слабых взаимодействий нельзя считать доказанной.

Трудности же создания теории сильных взаимодействий [16] связаны с тем, что из-за большой константы связи между нуклонами методы теории возмущений оказываются неприемлемыми. Вследствие этого, а также из-за наличия огромного экспериментального материапа,

28

Глава 1.

нуждающегося в теоретическом обобщении, в теории сильных взаимодействий развиваются методы, основанные на общих принципах квантовой теории поля - релятивистской инвариантности, локальности взаимодействий, означающей выполнение условий причинности, и др. К ним относится метод дисперсионных соотношений и аксиоматический метод. Последний, хотя и считается наиболее фундаментальным, однако не обеспечивает достаточного количества конкретных результатов, допускающих экспериментальную проверку. Наибольшие практические успехи в теории сильных взаимодействий получены в результате применения принципов симметрии.

Принципы симметрии или принципы инвариантности [17] носят общий характер, им подчинены все физические теории. Симметрия законов физики относительно некоторого преобразования означает, что эти законы не меняются при проведении данного преобразования. Поэтому считается, что принципы симметрии можно установить на основании известных физических законов. Если же теория каких-либо физических явлений еще не создана, то экспериментально открытые симметрии играют эвристическую роль при построении теории. Отсюда особая важность экспериментального установления симметрий сильно взаимодействующих элементарных частиц адронов, т. е. частиц, состоящих из кварков и антикварков, теория которых еще не создана.

Существуют общие симметрии, справедливые для всех физических законов, для всех видов взаимодействий, и приближенные симметрии, справедливые лишь для определенного круга взаимодействий или даже для одного вида взаимодействий. Таким образом, имеется некоторая иерархия симметрий. Симметрии делятся на пространственно-временные или геометрические внутренние симметрии, описывающие специфические свойства элементарных частиц. Считается, что справедливыми для всех типов взаимодействий являются симметрии законов физики относительно следующих пространственно-временных преобразований: сдвига и поворота физической системы как целого в пространстве, сдвига во времени (изменения начла отсчета времени). Инвариантность (неизменность) всех физических законов относительно этих преобразований отражает соответственно однородность и изотропность пространства и однородность времени. С этими симметриями связаны законы сохранения импульса, момента количества движения и энергии. Считается также, что к общим симметриям относятся также инвариантность по отношению к



Hosted by uCoz