Ацюковский В.А. Материализм и релятивизм. М.:Петит, 2009. — 258 с. — ISBN 5-85101-060-6

В начало   Другие форматы   <<<     Страница 150   >>>

  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148  149  150 151  152  153  154  155  156  157  158  159  160  161  162  163  164  165  166  167  168  169  170  171  172  173  174  175  176  177  178  179  180  181  182  183  184  185  186  187  188  189  190  191  192  193  194  195  196  197  198  199  200  201  202  203  204  205  206  207  208  209  210  211  212  213  214  215  216  217  218  219  220  221  222  223  224  225  226  227  228  229  230  231  232  233  234  235  236  237  238  239  240  241  242  243  244  245  246  247  248  249  250  251  252  253  254  255  256  257  258 

150

Глава 6.

Во-вторых, сведение сущности физических процессов к пространственно-временным искажениям означает не более, чем описание этих процессов в терминах категорий пространства и времени при полном игнорировании физической сущности этих процессов.

И, наконец, в-третьих, такой подход крайне обедняет описание явлений. В самом деле, в конце концов, пространство и время - это всего лишь два параметра, манипулируя которыми физики пытаются объяснить процессы. Реально же в любом процессе участвует бесчисленное множество физических параметров, из которых существенными для описания процесса оказывается не один десяток. Например, в любом гидромеханическом процессе участвуют не только пространственно-временные параметры, такие как координаты и отрезки времени, скорости и ускорения, но и такие, как плотность, температура, коэффициент адиабаты, различные виды вязкости кинематическая и динамическая, причем каждая из этих величин сама по себе нелинейна, т.е. является функцией других физических величин. Поэтому при попытках описать процесс только в терминах пространственно-временного континуума очень быстро выясняется, что просто кривизны пространства или скорости течения времени недостаточно, и появляются дополнительные параметры, связанные с топологией пространства или дополнительными измерениями, которые, конечно, конвертируемы, т. е. реально не обнаруживаемы, или применяются перенормировки или калибровки и масса других приемов, имеющих целью заменить как-то недостающие переменные. Отход от физической реальности становится все более дорогим и неудобным.

Сводя физику явлений к пространственно-временным искажениям, современная физическая теория исключила собственно физику процессов из рассмотрения вообще и положила тем самым предел познанию физических процессов. Немудрено, что современная теоретическая физика становится все более беспомощной, не способной разобраться не только в новых, недавно открытых явлениях, но и в тех, которые давно известны, и все более неспособной оказать действенную помощь практике, перед которой возникают все новые задачи.

Критика методологии современной теоретической физики

6.4. Критика математизации физики

В 20-м столетии особое значение в теоретической физике стало придаваться ее математизации, чем она качественно отличается от физики 19-го и предыдущих столетий [4].

Разумеется, физика 18-го и 19-го вв. тоже не обходилась без математики, но для нее математика была полезным подсобным инструментом, позволяющим проследить функциональные зависимости физических величин друг от друга и количественно оценить сложные явления как комбинацию простых его элементов. Сами же законы физики выводились непосредственно из экспериментов. Например, Ньютон своим Всемирным законом тяготения обобщил законы небесной механики Кеплера, которые были выведены на базе экспериментальных данных о положении планет, полученных датским астрономом Тихо Браге. Максвелл разработал теории электромагнетизма, опираясь на механическую модель эфира, в основу которой были положены экспериментальные данные о поведении жидких сред и экспериментальные данные по электричеству и магнетизму, полученные в экспериментальных работах Фарадея.

О том, что математике в те времена отводилась подсобная роль, можно судить по трудам М.Фарадея, которые историки физики до сих пор ценят очень высоко, но в которых нет ни одной формулы.

Конечно, и в 18 и в 19 вв. существовали физические работы, широко использующие математический аппарат, основы которого были еще раньше и в те же века разработаны выдающимися исследователями - естествоиспытателями и математиками, однако применительно к физическим исследованиям на первом месте всегда была физика, основанная на эмпирических или модельных данных, а затем уже математика как аппарат, предназначенный для обработки результатов экспериментальных данных или для предсказания новых ожидающихся результатов, вытекающих из уже известных законов.

Однако к концу 19-го в. математика в теоретической физике стала приобретать главенствующее положение, собственно физика стала оттесняться на*второй план.

Анализируя причины кризиса в теоретической физике в конце 19-го столетия, В.И.Ленин сослался на известную в те времена книгу Рея [4]:

«Кризис физики состоит в завоевании физики духом математики. Прогресс физики, с одной стороны, и прогресс математики, с другой,



Hosted by uCoz