![]() | ![]() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 | |
Чем отличается квантовая механика от классической? 73 «Когда длина волны мала по сравнению с предметом, стоящим на пути лучей, лучи ведут себя как поток частиц, .... Когда же длина волны велика по сравнению с предметом, ... лучи ведут себя как волны». Эта мысль, как отмечает Т.А.Лебедев [9, с. 22], хорошо перекликается с тем, что давно известно из обыденной практики. Корабль в море может испытывать качку на длинных волнах, потому они будут восприниматься как волны. Но так же самая возмущенная среда может воздействовать на корабль в виде ударов отдельных волн, если их длина будет отвечать размерам судна. Следовательно, одна и та же сущность (волна) в зависимости от средства измерения (наблюдения) может восприниматься и как волна, и как частица. Получается, что и в вопросе корпускулярно-волнового дуализма классическая физика использована явно недостаточно. К каким выводам следовало бы прийти, обнаружив, что частицы микромира ведут себя в некоторых случаях подобно волнам? Следовало бы в первую очередь поискать среду, способную эти волны образовывать. Следовало бы приступить к разработке моделей структур самих частиц микромира, а не оперировать понятиями их точечности, т. е. фактически их безразмерности, понимая, что безразмерность может быть допущена только как математический прием для решения узкого класса задач, а не как принцип устройства природы. Однако этого сделано не было. А результатом такого метафизического подхода явился разрыв между квантовой механикой и классической физикой, поскольку возникшие задачи требовали уточненного подхода. Но, оторвавшись от классической физики, квантовая механика сама оказалась чрезмерно обедненной, лишенной во многом физического содержания, что не могло не отразиться на ее результатах. Отказавшись от среды как от переносчика взаимодействий, от структуры микрообъектов, приняв в качестве основы не физическое содержание явлений, а их внешнее математическое описание, квантовая механика сама пошла по пути метафизики и обрекла себя на бесконечные «парадоксы», «перенормировки», абстракции и, в конце концов, на кризис. В чем суть кризиса квантовой механики? Качественная сторона кризиса заключается в том, что на основе квантовой механики не представляется возможным дать объяснение физическим явлениям, а также понять физическую сущность тех объектов, для которых была разработана квантовая механика, - объектов микромира. Почему микрочастицы не имеют размеров, не имеют структуры, но зато | 74 Глава 3. обладают массой, спином, магнитным моментом, зарядом и другими физическими параметрами? Что будет с плотностью частиц, если масса есть вполне определенная величина, а объем отсутствует? Как вообще можно объяснить корпускулярно-волновой дуализм частиц и что такое волновой пакет как микрочастица? Волны чего, какой среды? Почему происходит квантование проекций спина, орбитального и магнитного моментов на выбранное направление? Выбранное кем и на каких основаниях? Подобных вопросов можно поставить множество, ответа на них не будет. Потому что сами принципы, положенные в основу квантовой механики, на самом деле являются постулатами, тоже не имеющими физического качественного обоснования и подтвержденные потом, гак сказать, задним числом. Все эти «принципы» распространены беспредельно, включая области, к которым они не имеют никакого отношения. Количественная сторона кризиса заключается в том, что методы квантовой механики позволяют количественно рассчитать лишь относительно простые системы, а более сложные представлять лишь на качественном уровне. Количественная сторона кризиса заключается также в наличии «парадоксов», прежде всего, в наличии «энергетического парадокса», связанного непосредственно с тем, что в квантовой механике частицы не имеют размера, а подсчет энергии электрического поля во всем пространстве, окружающем частицу, приводит к логарифмической бесконечности при любом значении заряда частицы. Распространение электромагнитных величин -скорости света, постоянной Планка на сильные ядерные взаимодействия, к которым эти величины не имеют никакого отношения, поскольку это другой вид взаимодействий, привело квантовую механику к необходимости искусственно увязывать теоретические и экспериментальные результаты, вводя перенормировки и калибровки, меняя их каждый раз, когда расхождения между расчетами и опытными данными оказываются слишком большими. А, главное, введя в догму принцип неопределенности Гейзенберга, в соответствии с которым природа микромира принципиально неопределима и обладает лишь вероятностными характеристиками, квантовая механика тем самым поставила пределы возможностям человека в изучении глубинных механизмов природы и этим наложила своего рода запрет на развитие его знаний о природе. Появляющиеся же в результате исследований несоответствия между представлениями |