![]() | ![]() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 | |
Чем отличается квантовая механика от классической? 119 имеют совсем другую физическую природу, чем электромагнетизм. Следовательно, нет никакого основания считать постоянную Планка постоянной для всех видов взаимодействия. Соотношение неопределенностей Гейзенберга, в которое входит постоянная Планка, имеющая электромагнитную природу, можно считать справедливым только применительно к электромагнитным и оптическим измерениям, в которых используются электромагнитные поля или оптическое излучение. Это соотношение нельзя использовать, когда в основу измерений положены не электромагнитные принципы. В это случае, по-видимому, можно составить неравенство, аналогичное соотношению неопределенности Гейзенберга, но в правой его части уже не должна стоять постоянная Планка, а должна находиться иная величина, характеризующая тот вид поля, который использован для измерения. Если это, например, гравитационное поле, то справа окажется величина, порядок которой будет отличаться в меньшую сторону на те же 36 единиц, т. е. все измерения могут быть в принципе на 36 порядков точнее, чем при измерении электромагнитным способом, потому что влияние измерительного прибора в этом случае окажется на 36 порядков слабее. Правда, есть некоторая особенность в гравитационных измерениях: никто еще не проводил таких измерении на уровне микромира, однако это вовсе не означает принципиальной невозможности таких измерений. Нет никакого основания полагать, что все кванты энергии, формы которой уже известны и, тем более, которые еще неизвестны, имеют электромагнитную природу. Наоборот, кванты ядерных сил и гравитационных полей, если только они существуют, обязательно должны иметь не электромагнитную природу, следовательно, постоянная Планка как величина, характеризующая электромагнитные взаимодействия, не должна иметь отношения ни к ядерным взаимодействиям, ни к гравитации. Точно так же, если измерения каких-либо макрообъектов проводить с помощью, скажем, струй газа, то тогда аналогом кванта буде величина, характеризующая энергию одной молекулы газа. | 120 Глава 3. Из сказанного следует, что для точных измерений, как в макромире, так и в микромире нужно применять поля, обладающее квантами энергии, несоизмеримо малыми по сравнению с энергиями измеряемых объектов. В микромире для изучения свойств отдельных микрообъектов нужно проводить измерения не электромагнитным способом, а иным, если нужно повышать точность измерения. Каким именно - пока может быть и неизвестно, но неизбежно существующим или, по крайней мере, возможным, поскольку дробление материи беспредельно, если и в самом деле «.электрон так же неисчерпаем, как и атом». 3. В утверждении, что соотношение неопределенностей есть устройство природы, а не следствие измерений, сказывается проявление своеобразного гомоцентризма, даже солипсизма, в соответствии с которым мир существует постольку, поскольку мы об этом знаем. Здесь можно рассмотреть также некоторую аналогию. Если в какой-то электрической сети есть напряжение или оно там отсутствует, то это не зависит от того, знаем мы об этом или не знаем. Для этого может оказаться сколько угодно причин, но только не наличие нашего знания о нем. От того, измерим ли мы это напряжение или нет, изменятся наши знания о наличии или отсутствия этого напряжения, но само это напряжение будет существовать в сети или отсутствовать там - совершенно не зависит от факта измерения. Теория измерений учит: чтобы не вносить в измеряемые величины значительных погрешностей, нужно иметь измерительный прибор, влияние которого на результаты измерений не выходит за допустимые пределы. Например, напряжение в электрической цепи измеряют вольтметром, который всегда искажает измеряемое напряжение, если способ измерения не компенсационный. Чтобы по возможности уменьшить погрешность измерения, нужно применять высокоомные вольтметры, отбирающие минимум энергии у источника напряжения. Чем меньше энергии будет потрачено на измерения, тем меньше будет искажено измеряемое напряжение. Во всех случаях вольтметр должен быть таким, что |