![]() | ![]() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 | |
78 Глава 2. Эксперимент 1887 г. был усовершенствован в том плане, чтобы избавиться от влияния вибраций, для чего была использована мраморная плита весом порядка 800 кг, водруженная на деревянный поплавок, плавающий в ртутной ванне. Но эксперимент по-прежнему проводился в подвале. И опять свойства эфира идеализировались. Но и здесь не было «нулевых» показаний. Но затем эксперимент начали проводить на отдельно стоящих высотах, в 1905 г. - на Евклидовых высотах (высота 250 м. над уровнем моря), а, начиная с 1921 г. на горе Маунт Вилсон высотой в 1860 м. И сразу же был выявлен эфирный ветер, скорость которого увеличивалась с высотой на высоте 250 м - 3,5 км/с, на высоте 1860 м - 8 - 10 км/с). Это сразу же указало на газоподоб-ность эфира и, главное, на то, что эфир обладает вязкостью. А после обработки результатов выяснилось, что эфирный ветер дует не в плоскости эклиптики, как ожидалось, а в направлении, перпендикулярной ей. И таким образом, возникла необходимость изменения и исходной максвелловской модели. В настоящее время все эти проблемы решены. Что касается нескольких экспериментов по обнаружению эфирного ветра, выполненных некоторыми исследователями (Пикаром, Стаэли, Кеннеди, Иллингвортом, Таунсом), то они тоже не представляли себе природы эфира и сконструировали приборы так, что ничего обнаружить не смогли, но это их ошибки, а не ошибки теории эфира. Следует отметить еще одно обстоятельство: точно так же, как любое конечное число фактов может соответствовать любому (бесконечному) числу теорий, точно так же и полученный результат опыта может укладываться и тем самым «подтверждать» любое (бесконечное) число теорий, даже взаимоисключающих друг друга. Аналогией этому положению является, например, тот факт, что через ограниченное количество точек можно повести любое количество плавных кривых высшего порядка. Примером являются эксперименты по «подтверждению» Специальной теории относительности. Эти эксперименты подтверждают не собственно СТО, как это обычно преподносится, а | Об основах Теории относительности А.Эйнштейна 79 всего лишь зависимости, удачно аппроксимируемые преобразованиями Лоренца, которые, собственно, и являются тем математическим аппаратом, из которого вытекают все остальные зависимости СТО. Однако сами преобразования Лоренца, разработанные им в 1904 г., т. е. за год до создания СТО, основаны на совершенно иной, нежели Специальная теория относительности, идее. В соответствии с теорией Лоренца о неподвижном эфире, поскольку все тела между атомами и молекулами являются электрическими, они должны изменять свои размеры при движении сквозь эфир (поле электрических зарядов, по мысли Лоренца, должно деформироваться, и расстояния между ядрами атомов должны изменяться). Вывод соответствующих зависимостей привел Лоренца к преобразованиям, которые и получили его имя. Поэтому соответствие полученных результатов преобразованиям Лоренца вовсе не означает подтверждения СТО, это может быть трактовано и как подтверждение теории Лоренца неподвижного эфира. А, кроме того, существуют газомеханические зависимости, в которых вместо отношения скорости тела к скорости света в фигурирует отношение скорости тела к скорости звука в газовой среде М. До величины в = М = 0,85 эти зависимости дают результат, отличающийся от эйнштейновского в пределах нескольких процентов. Если эфир обладает газоподобной структурой, то полученные в экспериментах результаты будут хорошо демонстрировать наличие в природе газоподобного эфира. На интерпретацию результатов решающее влияние оказывает выбор инвариантов и представление о сущности явления, вытекающее из общей философской подготовки экспериментаторов. Здесь имеются чрезвычайно широкие возможности для самого разнообразного толкования результатов, выдачи желаемого за действительное, вплоть до теологических толкований. Среди всех этих вопросов особо важное значение имеет выбор общих физических инвариантов. Так, в результате экспериментов по определению массы частицы при приближении ее скорости к скорости света получается сложная зависимость, связывающая напряженность поля конденсатора и напряженность маг |