![]() | ![]() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 | |
Об основах Теории относительности А.Эйнштейна 51 свелла дают весьма ощутимые отклонения от эксперимента. Теория явно требовала усовершенствования, доработки. Однако наука, благодаря усилиям некоторых ученых, сошла с прямого пути и занялась поисками произвольных постулатов, способных подогнать новые факты к устаревшим гипотезам. Гносеологическое направление в науке, согласно которому чистому мышлению доступно познание действительности, берущее свое начало от Платона, получило во второй половине XIX столетия дальнейшее развитие в трудах Маха, Пуанкаре, а позднее и Эйнштейна [2]. В XIX веке была широко распространена гипотеза эфира, мировой всепроникающей среды, заполняющей все пространство. Эфир, как носитель света, должен обладать многими удивительными свойствами: с одной стороны он должен быть чрезвычайно «тонким», невесомым, чтобы не препятствовать движению микрочастиц и небесных тел, с другой стороны, он должен быть невероятно «жестким», чтобы передавать поперечные волны света со скоростью в сотни тысяч километров в секунду. Возможная для него частота колебаний должна охватывать весь диапазон, практически от нуля, до многих триллионов (1018) в секунду. Но во второй половине XIX века трудами Сен-Венана, Релея и Столетова было выяснено, что подобные требования к веществу совершенно несовместимы. Было сделано много попыток спасти гипотезу эфира за счет усложнения его гипотетических свойств, но, как писал С.И.Вавилов, «Под натиском опытных данных концепция эфира стала столь громоздкой и неопределенной, что в пользу ее трудно аргументировать даже тем, что она дает довольно наглядный образ явлений. Как и во времена Ньютона, мы так же мало знаем «что такое эфир», а, пожалуй, даже меньше, чем тогда» [3]. На смены гипотезе эфира пришла электромагнитная теория Максвелла. Она имела то преимущество, что заменила явно дискредитированный эфир новым понятием - «электромагнитное поле». Это понятие не имело аналогов в зрительно наблюдаемом мире и поэтому позволяло приписывать себе желаемые свойства, | 52 Глава 2. в том числе и способность передавать световые и электрические волны со скоростью в 300 раз большей, чем у наиболее быстрых из известных космических тел (комета Когоутека). Теория Максвелла при малых скоростях и в статике отлично описывала все известные к тому времени электромагнитные явления, но и старая эфирно-волновая теория имела много привлекательных черт. Нужен был такой решающий эксперимент, который мог бы подтвердить справедливость только одной из конкурирующих теорий. И Максвелл нашел такую схему. Идея опыта основывалась на том, что квадрат скорости любой упругой волны равен только отношению модуля упругости к удельной плотности вещества среды распространения, но не зависит от движения источника. Если эфир, как материальная среда, существует, то представляется возможность опытного измерения абсолютной скорости Земли в мировом пространстве. Для этого достаточно найти скорость распространения света от земного источника в направлении движения земли и в противоположном направлении и взять полуразность амплитуд ее значения. Этим будет подтверждена эфирно-волновая тория. Если же справедливы исходные идеи теории Максвелла, то электромагнитное поле, созданное каким-либо источником, останется с ним жестко связанным и будет перемещаться вместе с ним. Поэтому и колебания в нем должны распространяться со скоростью постоянной относительно источника в момент излучения, как бы он после этого ни двигался. Такого результата явно ожидал Максвелл. К сожалению, опыт, им предложенный, был поставлен Май-кельсоном лишь спустя шестнадцать лет после предложения и через два года после смерти инициатора (1879). При жизни Максвелл не имел возможности убедиться сам в результатах опыта и доказать современникам, насколько он был прав. Экспериментатор же и его современники не восприняли идею Максвелла, оставаясь в плену эфирных представлений Гюйгенса, Физо и др. Вместо того, чтобы принять «простое и убедительное» объяснение, даваемое электромагнитной теорией, они продолжа |