![]() | ![]() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 | |
Чем отличается квантовая механика от классической? 91 и ее экспериментальное подтверждение дали бесспорное доказательство сложности атома. Представление о неделимости и не превращаемости атома было окончательно опровергнуто работами французских ученых М.Склодовской-Кюри и П.Кюри, а также работами английского радиохимика Содди. Результаты исследования свойств электрона и радиоактивности позволили строить конкретные модели атома. В модели, предложенной Дж.Дж.Томсоном в 1903 г. атом представлялся в виде положительно заряженной сферы, в которую вкраплены незначительные по размеру по сравнению с атомом отрицательно заряженные электроны. Они удерживаются в атоме благодаря тому, что силы притяжения их распределенным положительным зарядом уравновешиваются силами их взаимного отталкивания. Томсоновская модель давала известное объяснение возможности испускания, поглощения и рассеяния света атомом. Однако модель Томсона оказалась неудовлетворительной, так как на ее основе не удалось объяснить совершенно неожиданный результат опытов английского ученого Резерфорда и его сотрудников Г ей-гера и Марсдена по рассеянию альфа-частиц атомами: при прохождении пучка альфа-частиц через тонкий слой вещества происходило небольшое размытие пучка. Однако очень малая доля альфа-частиц отклонялась на углы, превышающие 90о. Этот результат можно было объяснить только в том случае, если в атоме содержится положительно заряженное ядро малого размера по сравнению с размером самого атома. Поэтому томсоновская модель не годилась. В 1911 г. Резерфорд предложил принципиально новую модель атома, напоминавшую по строению солнечную систему и получившую название планетарной. Согласно этой модели в центре каждого атома имеется положительно заряженное ядро малого размера, вокруг которого на различных орбитах движутся отрицательно заряженные электроны. Положительный заряд ядра в точности равен сумме зарядов электронов, поэтому атом в целом нейтрален. Для проверки планетарной модели Резерфорд и его | 92 Глава 3. ученик Дарвин подсчитали угловое распределение частиц, рассеянных точечным ядром - центром кулоновских сил. Полученный результат был проверен опытным путем - измерением числа альфа-частиц, рассеянных под разными углами. Результаты опыта в точности совпали с теоретическими расчетами, блестяще подтвердив тем самым планетарную модель Резерфорда [1]. Однако планетарная модель атома натолкнулась на принципиальные трудности. Согласно классической электродинамике заряженная частица, движущаяся с ускорением, должна непрерывно излучать электромагнитную энергию. Но при этом они за ничтожную долю секунды потеряли бы всю свою кинетическую энергию и упали на ядро. Другая трудность, связанная также с излучением, состояла в том, что частота излучаемого света электроном должна быть равна частоте обращения электрона вокруг ядра, что противоречило опытным данным. Таким образом, в рамках модели атома Резерфорда не могли быть объяснены устойчивость атома по отношению к излучению и линейчатые спектры его излучения [2-4]. Возникшие противоречия были разрешены в 1913 г. датским ученым Бором, выдвинувшим два постулата, не укладывающихся в рамки классической физики [5]. Первый постулат Бора - существование стационарных состояний атома. Атом не излучает и является устойчивым лишь в некоторых стационарных (неизменных во времени) состояниях, соответствующих дискретному (прерывному) ряду «дозволенных» значений энергии Еь Е2, Е3, Е4... Любое изменение энергии связано с квантовым скачкообразным переходом из одно стационарного состояния в другое. Второй постулат Бора - условие частот излучения (квантовых переходов с излучением). При переходе из одного стационарного состояния с энергией Ei в другое состояние с энергией Ek атом испускает или поглощает свет определенной частоты v в виде кванта излучения (фотона) hv согласно соотношению hv = Ei - Ek |