Ацюковский В.А. Начала эфиродинамического естествознания. Книга 1. Методологический кризис современной теоретической физики. М.:Петит, 2009. — 296 с. — ISBN 978-5-85101-027-9

В начало   Другие форматы   <<<     Страница 93   >>>

  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93 94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148  149  150  151  152  153  154  155  156  157  158  159  160  161  162  163  164  165  166  167  168  169  170  171  172  173  174  175  176  177  178  179  180  181  182  183  184  185  186  187  188  189  190  191  192  193  194  195  196  197  198  199  200  201  202  203  204  205  206  207  208  209  210  211  212  213  214  215  216  217  218  219  220  221  222  223  224  225  226  227  228  229  230  231  232  233  234  235  236  237  238  239  240  241  242  243  244  245  246  247  248  249  250  251  252  253  254  255  256  257  258  259  260  261  262  263  264  265  266  267  268  269  270  271  272  273  274  275  276  277  278  279  280  281  282  283  284  285  286  287  288  289  290  291  292  293  294  295  296 
Microsoft Word - 1_001_Титул1.doc

Чем отличается квантовая механика от классической?

93

Для определения «дозволенных» значений энергии атома квантования его энергии и для нахождения характеристик соответствующих стационарных состояний Бор применил классическую ньютоновскую механику.

В 1913 г. Бор писал, что если мы желаем вообще составить наглядное представление о стационарных состояниях, у нас нет других средств, по крайней мере, сейчас, кроме обычной механики.

На основе изложенных представлений Бор вычислил частоту обращения и радиусы орбит электронов в атоме водорода, нашел наименьший (боровский) радиус круговой орбиты, рассчитал энергию спектров, частоты обращения электронов в зависимости от их энергий. При этом оказалось, что частоты излучаемого атомом света не совпадают с частотами обращения, как этого требует классическая электродинамика, а пропорциональна разности энергий электрона на двух возможных орбитах.

Основные положения квантовой механики - два постулата Бора - были всесторонне подтверждены экспериментами. Дальнейшее развитие атомной физики показало справедливость выдвинутых Бором положений не только для атомов, но и для других микроскопических систем - для молекул и атомных ядер. Это дало основание теоретической физике рассматривать боровские постулаты как твердо установленные опытные квантовые законы.

Однако физики-теоретики были не удовлетворены искусственным соединением электродинамики и классической механики в боровских построениях. Кроме того, теория Бора не справилась со многими задачами теории спектров, в частности, не объяснила интенсивности спектральных линий. При переходе к объяснению движений электронов в атомах более сложных, чем водород, модельная теория Бора оказалась в тупике. Теория оказалась бессильной и в решении такой проблемы, как соединение атомов в молекулы.

Началом нового этапа развития физики и собственно исходным пунктом квантовой механики послужила идея французского физика де Бройля о двойственной природе движения микрообъ

Microsoft Word - 1_001_Титул1.doc

94

Глава 3.

ектов, в частности, электрона. Это дало возможность в 1926 г. Шредингеру показать, что устойчивым движением электрона в атоме соответствуют стоячие волны, причем стационарным орбиталям электронов соответствуют целые числа волн на орбите. Развитие этих представлений позволило разрешить все накопившиеся противоречия, разработать методы расчета распределения плотности электронного заряда в атомах и молекулах, рассчитать энергии электронов в сложных атомах и многое другое.

Важный общий принцип, связанный со спином электрона, был открыт швейцарским физиком Паули в 1925 г. Согласно этому принципу в каждом электронном состоянии в атоме может находиться только один электрон; если данное состояние уже занято каким-либо электроном, то последующий электрон, входя в состав атома, вынужден занимать уже другое состояние. На основе принципа Паули были окончательно установлены числа заполнения электронных оболочек в атомах, определяющие периодичность свойств элементов.

Все дальнейшее развитие квантовой механики базировалось на перечисленных выше постулатах, принципах и моделях, начало которым было положено планетарной моделью Резерфорда.

Однако, несмотря на, казалось бы, общую стройность всей концепции квантовомеханических представлений об устройстве атома, существует множество вопросов, на которые квантовая механика сегодня ответить не в состоянии, и главные вопросы касаются все того же устройства атома.

В самом деле, как все же устроен атом, даже простейший -атом водорода? Почему он состоит из протона и электрона? Почему в сложных атомах положительный заряд ядра в точности равен суммарному заряду орбитальных электронов, а заряды электронов все равны между собой? Чем обеспечивается стационарность орбит, почему, собственно, целое число колебаний электронной волны на орбите обеспечивает ей стационарность? А если это будет не целое число, то каков механизм рассеивания энергии? Ведь отдельные колебания, вероятно, появляются на орбите в разные моменты времени, тогда какая ж разница в том,



Hosted by uCoz