![]() | ![]() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 | |
98 Глава 3. Метафизический подход, ограниченность представлений привели к совершенно неправильному мнению о том, что частицы и волны - нечто в принципе различное, что якобы вытекает из самих принципов классической физики. Однако существует и иной взгляд, согласно которому понятие «частица-волна» возникает из наблюдения волн которые в зависимости от обстановки могут вести себя либо как волны, либо как частицы. По этому поводу А.Ф.Иоффе писал [8]: «Когда длина волны мала по сравнению с предметом, стоящим на пути лучей, лучи ведут себя как поток частиц, .... Когда же длина волны велика по сравнению с предметом, ... лучи ведут себя как волны». Эта мысль, как отмечает Т. А. Лебедев [9, с. 22], хорошо перекликается с тем, что давно известно из обыденной практики. Корабль в море может испытывать качку на длинных волнах, потому они будут восприниматься как волны. Но так же самая возмущенная среда может воздействовать на корабль в виде ударов отдельных волн, если их длина будет отвечать размерам судна. Следовательно, одна и та же сущность (волна) в зависимости от средства измерения (наблюдения) может восприниматься и как волна, и как частица. Получается, что и в вопросе корпускулярно-волнового дуализма классическая физика использована явно недостаточно. К каким выводам следовало бы прийти, обнаружив, что частицы микромира ведут себя в некоторых случаях подобно волнам? Следовало бы в первую очередь поискать среду, способную эти волны образовывать. Следовало бы приступить к разработке моделей структур самих частиц микромира, а не оперировать понятиями их точечности, т. е. фактически их безразмерности, понимая, что безразмерность может быть допущена только как математический прием для решения узкого класса задач, а не как принцип устройства природы. Однако этого сделано не было. А результатом такого метафизического подхода явился разрыв между квантовой механикой и классической физикой, поскольку возникшие задачи требовали уточненного подхода. Но, оторвав | Чем отличается квантовая механика от классической? 99 шись от классической физики, квантовая механика сама оказалась чрезмерно обедненной, лишенной во многом физического содержания, что не могло не отразиться на ее результатах. Отказавшись от среды как от переносчика взаимодействий, от структуры микрообъектов, приняв в качестве основы не физическое содержание явлений, а их внешнее математическое описание, квантовая механика сама пошла по пути метафизики и обрекла себя на бесконечные «парадоксы», «перенормировки», абстракции и, в конце концов, на кризис. 3.2. О некоторых недостатках квантовой механикиКак известно, квантовая механика - это теория, устанавливающая способ описания и законы движения микрочастиц - элементарных частиц, атомов, молекул, атомных ядер и их систем, например, кристаллов. Квантовая механика устанавливает также связь величин, характеризующих частицы и системы с непосредственно измеряемыми в опытах физическими величинами [1, 2]. Квантовая механика позволила во многом уяснить строение атома, природу химической связи, строение атомных ядер, свойства элементарных частиц. На основе квантовой механики удалось в значительной степени объяснить свойства газов и твердых тел, такие явления как ферромагнетизм, сверхтекучесть и сверхпроводимость, представить природу таких астрообъектов, как Белые карлики и нейтронные звезды, прояснить механизм протекания термоядерных реакций в солнце и звездах и многое другое. Некоторые крупнейшие технические достижения 20-го века, такие, как работа ядерных реакторов, полупроводников, используемых в новейшей технике, основаны по существу на законах квантовой механики, с ее помощью осуществлен направленный поиск и созданы новые материалы, в том числе магнитные, полупроводниковые и сверхпроводящие. |