Ацюковский В.А. Приключения инженера. — М.:Хроникёр, 2007. — 384 с. — ISBN 978-5-901238-45-5

В начало   Другие форматы   <<<     Страница 217   >>>

  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148  149  150  151  152  153  154  155  156  157  158  159  160  161  162  163  164  165  166  167  168  169  170  171  172  173  174  175  176  177  178  179  180  181  182  183  184  185  186  187  188  189  190  191  192  193  194  195  196  197  198  199  200  201  202  203  204  205  206  207  208  209  210  211  212  213  214  215  216  217 218  219  220  221  222  223  224  225  226  227  228  229  230  231  232  233  234  235  236  237  238  239  240  241  242  243  244  245  246  247  248  249  250  251  252  253  254  255  256  257  258  259  260  261  262  263  264  265  266  267  268  269  270  271  272  273  274  275  276  277  278  279  280  281  282  283  284  285  286  287  288  289  290  291  292  293  294  295  296  297  298  299  300  301  302  303  304  305  306  307  308  309  310  311  312  313  314  315  316  317  318  319  320  321  322  323  324  325  326  327  328  329  330  331  332  333  334  335  336  337  338  339  340  341  342  343  344  345  346  347  348  349  350  351  352  353  354  355  356  357  358  359  360  361  362  363  364  365  366  367  368  369  370  371  372  373  374  375  376  377  378  379  380  381  382  383  384  385 

Утверждают, что проверка суммы углов, которые меньше 180 градусов, возможна лишь для очень больших треугольников. Если взять, к примеру, крайние точки орбиты Земли, а третьей точкой — звезду Сириус, то вот там и будет яркое доказательство справедливости неевклидовой геометрии. Очень может быть. Но до Сириуса далеко, и если это даже так, то что нам, землянам, с этого толку? Не кажется ли, что все эти игры напоминают ума досужих рассуждений и сердца горестных замет, и ничего более? Зачем все это?

Существуют еще и другие геометрии, например геометрия Рима- на. Про нее говорят, что это геометрия на шаре, и тут нет никаких возражений, кроме, разве что, того же вопроса: о каком конкретно шаре идет речь? Никто не возражает против исходных аксиом ри- мановой геометрии, о том, что через две точки проходит только одна прямая, что две плоскости пересекаются по одной прямой и что прямые, лежащие в одной плоскости, пересекаются в одной точке. Но что нового, кроме другой системы рассуждений, это вносит в физику реального пространства?

В римановой геометрии зато появилось понятие «кривизна пространства». Кривизны относительно чего, относительно того же пространства? Появилось понятие «пространства Римана». Очень интересно. Сколько же всего таких «пространств», если все мы живем в общем, обыкновенном евлидовом пространстве, зачем они?

Существует еще «пространство Минковского», которое Мин- ковский, немецкий математик, изобрел в 1907-1908 годах, и которое явилось отправной точкой для создания Эйнштейном Общей теории от- носи-тельности. Главное в геометрии Минковского - связь пространства со временем через скорость света. Тут трудно сказать, кто кого опередил, Эйнштейн Минковского, поскольку начало этих идей все же лежит в статье Эйнштейна «К электродинамике движущихся тел», написанной в 1905 году, или Минковский Эйнштейна. Но общую теорию относительности, в которой в полной мере использованы все эти идеи по кривизне пространства, Эйнштейн создал все

217

же позже. И у него пространство тоже искривляется и тоже относительно чего?

А далее эти идеи подхватил ныне здравствующий академик Логунов, у которого пространство не только искривляется, но и скручивается. Есть еще теория Г. И. Шипова, у которого пространство тоже скручивается. И сейчас существует множество деятелей, продолжателей этой замечательной идеи. Вместо того чтобы заниматься изучением физических процессов, они их сводят ко всякого рода искажениям пространства и времени, начисто отбрасывая тем самым физический смысл этих самых процессов.

Уважаемые Коперники геометрии! Чем вы занимаетесь, за что вам платят зарплату? За то, что вы рассказываете друг другу свои измышления, не имеющие никакого отношения к реальной физике? А потом вы подаете все это как высшее достижение человеческого разума тем, кто никогда подобными вопросами не занимался, и ждете восторженных восклицаний, сопровождающихся, разумеется, соответствующими субсидиями!

Нет у пространства никакой кривизны! Нет, и никогда не было! Структуры и процессы могут быть кривыми и косыми, а не пространство. Время есть отражение всех процессов во всей Вселенной, и если какие-то процессы замедляются, то это замедляются процессы, и на то есть, следовательно, физические причины. А вовсе не время, которое ни замедляться, ни ускоряться не может принципиально. Пространство и время - это инвариантные категории, отражающие свойства всей материи Вселенной в целом. На них нельзя повлиять ничем, так же как нельзя повлиять на всю Вселенную в целом. Опомнитесь, уважаемые ученые, если у вас есть совесть! Ведь дело скоро дойдет и до публичного мероприятия, именуемого фейсом об тейбл, чем тогда будете оправдываться?

12 Скользящий интеграл общественного прогресса

Барон Мюнхаузен был веселым выдумщиком, а вовсе не вралем, как считали его современники. Просто ему было скучно среди чопорных немецких бюргеров, вот он и выдумывал всякие истории, которые воспринимались слишком серьезно. Один из его рассказов был о лошади, которая никак не могла напиться.

Дело было во время войны с французами. Лошадь барона захотела пить, и он поехал на ней к реке, чтобы ее напоить. Но лошадь все никак не могла напиться, и только через некоторое время барон, оглянувшись, заметил, что у лошади заднюю часть оторвало неприя¬

218



Hosted by uCoz