![]() | ![]() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 | |
многое другое. В технике теория вероятности нашла исключительно важное применение при оценке надежности изделий, выборе резервов, а также при расчете допустимых погрешностей. Однако строго обоснованных и точных методов в теории вероятности не существует до сих пор. Что поделаешь, вероятность - она и есть вероятность! Вероятности тех или иных событий удобно изображать в виде гистограмм или плотностей распределения вероятностей. Это вот что. Предположим, у вас есть 100 одинаковых стержней длиной по метру. Они сделаны не очень точно, это и не нужно, потому что допустимая погрешность составляет ± 1 см. Все стержни немного отличаются друг от друга. Выберем из общей массы те, длина которых лежит в пределах от 1000 до 1001 миллиметра, поделим это число выбранных стержней на общее число стержней и получим процент этих стержней. Когда мы переберем все стержни с заданным интервалом по 1 миллиметру и расположим все эти проценты на общем графике, в котором по горизонтали будет отложена длина, а по вертикали все эти проценты, мы и получим гистограмму. Сумма всех ординат в гистограмме всегда равна 100%. В плотность вероятности гистограмма превращается, если все ее ординаты разделить на указанный выше интервал, в данном случае на миллиметр. Тогда по вертикали будут откладываться не проценты, а величины, обратные той, которая указана в оси абсцисс, в данном случае, 1/м, или м-1. В принципе это все одно и то же, пользуются тем, что удобнее. А чтобы пользоваться всеми этими приемами было еще удобнее, разработано несколько типовых плотностей распределения вероятностей. И самым ходовым распределением оказалось распределение, изобретенное где-то в первой половине XIX века великим немецким математиком Карлом Гауссом. Гаусс рассудил так. Если имеется много одинаковых величин с отклонениями туда-сюда, то всегда можно найти их систематическую составляющую. Это будет средняя арифметическая величина. Теперь найдем от нее отклонения. Они будут разными, и их можно представить как сумму бесконечного числа неких одинаковых величин, складывающихся хаотически. Удобнее всего их представить в виде одинаковых стрелок-векторов, которые вращаются на плоскости, как их душе угодно, но суммируются только их проекции на какое-то одно направление. В результате в большинстве случаев суммарное отклонение будет небольшим, в некоторых побольше, и только очень редко очень большим. А уж если все они выстроятся в один ряд, а общее число их бесконечно велико, то мы и получим бесконечное отклонение. Вот исходя из таких предположений Гаусс и вывел свое гауссовское распределение случайных величин, которое получило название «нормального». 194 | Как некая абстрактная модель, это нормальное распределение случайных величин у меня никаких возражений не вызывает. Хотя сам термин «нормальное» непонятен. Если это от слова «норма», то спрашивается, что это за норма и почему решено, что именно это норма. Норма чего? Если от слова «нормально», то, что же это, все остальные распределения, а их много, не нормальные, что ли? Непонятно. Но главное, что гауссовская модель предполагает бесчисленное множество участвующих звеньев, к тому же одинаковых, но суммирующихся хаотически, случайно. И она тем самым подразумевает наличие «хвостов», то есть возможность существования очень больших, хотя и очень редких отклонений, даже многократно превышающих номинал. А ничего такого в жизни на самом деле нет. Все эти математические размышления вовсе не так безобидны, как кажется на первый взгляд. Дело в том, что все эти вероятности в авиационном приборостроении стали широко применяться для задания допустимых погрешностей на показания приборов. Военные заказчики и их представители в НИИ, КБ и на заводах, принимающие по совместительству и некоторую гражданскую продукцию, определяют допустимую погрешность через 2а или За. А этим значком s обозначается средняя квадратичная ошибка. Эта ошибка определяется как корень квадратный из суммы квадратов всех частных ошибок, деленной на число этих ошибок, то есть Тонкость здесь заключается в том, что значения 2а и За означают соответственно 95 и 99,8% случаев, что справедливо только для нормального, т.е. гауссовского распределения. Во всех остальных случаях они превышают предельную ошибку и, следовательно, не имеют 195 |