Ацюковский В.А. Приключения инженера. — М.:Хроникёр, 2007. — 384 с. — ISBN 978-5-901238-45-5

В начало   Другие форматы   <<<     Страница 196   >>>

  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148  149  150  151  152  153  154  155  156  157  158  159  160  161  162  163  164  165  166  167  168  169  170  171  172  173  174  175  176  177  178  179  180  181  182  183  184  185  186  187  188  189  190  191  192  193  194  195  196 197  198  199  200  201  202  203  204  205  206  207  208  209  210  211  212  213  214  215  216  217  218  219  220  221  222  223  224  225  226  227  228  229  230  231  232  233  234  235  236  237  238  239  240  241  242  243  244  245  246  247  248  249  250  251  252  253  254  255  256  257  258  259  260  261  262  263  264  265  266  267  268  269  270  271  272  273  274  275  276  277  278  279  280  281  282  283  284  285  286  287  288  289  290  291  292  293  294  295  296  297  298  299  300  301  302  303  304  305  306  307  308  309  310  311  312  313  314  315  316  317  318  319  320  321  322  323  324  325  326  327  328  329  330  331  332  333  334  335  336  337  338  339  340  341  342  343  344  345  346  347  348  349  350  351  352  353  354  355  356  357  358  359  360  361  362  363  364  365  366  367  368  369  370  371  372  373  374  375  376  377  378  379  380  381  382  383  384  385 

смысла. Американцы, учтя это, задают не мифические 2а или За, a либо ошибку для 95% случаев, либо предельно допустимую ошибку. Им не приходится волноваться по поводу того, что то, что они требуют, больше предельной величины.

Автор многократно пытался объяснить заказчику и своему начальству недопустимость принятого у нас положения. Но ни те ни другие так и не вняли. Потому что никто проверять все равно не будет, зачем же набиваться на дополнительные хлопоты?

Но тут подвернулся случай когда хотя бы в принципе все можно поставить на свои места.

Оказалось, что к близкому сердцу автора барометрическому высотомеру все эти среднеквадратические ошибки никак не могут быть пристроены. Слишком хлопотно их принимать на заводе. Дело в том, что высотомер проверяется во многих точках диапазона, и если все его ошибки возводить в квадраты, складывать, потом делить и извлекать корень, то инженеры и рабочие должны переквалифицироваться в пересчетчики и высотомеры делать будет некому. А потому решили, что нечего валять дурака, надо просто смотреть, чтобы ни в одной точке показания не выходили за допустимые рамки. Так решили, так это и сохраняется до сих пор. То есть была принята предельная ошибка. Но в некоторых задачах все же надо знать и среднеквадратичную ошибку. Вычислять ее каждый раз неудобно, поэтому надо бы выяснить, какой закон распределения имеют погрешности высотомера, чтобы по предельной ошибке сразу выяснить и среднеквадратичную.

Тогда автор, то есть я, рассудил просто. Чем занимается техник- регулировщик высотомеров? Он стремится так регулировать прибор, чтобы погрешности были во всех точках как можно меньше. Но это не всегда удается. Однако предельную ошибку превышать никак нельзя. Из таких соображений вылупилось семейство распределений, которое было названо логарифмическим, каковым оно и является.

1    Дх

р(Ах) =- 1пя-

2л! Дх0 Ах0

Здесь п - показатель степени распределения, который может быть различным у распределений конкретных физических величин.

1

р(Дх) =-,

2Дх0

Очень быстро выяснилось, что при п = О распределение превращается в равномерное, характерное для цифровых систем:

А при п = 1 оно приобретает вид

196

1 Дх

р(Ах)= -In -

2Ах0 Ах0

и при этом отношение предельной и среднеквадратичной ошибок в точности равно 3, как это и было принято всеми, но без обоснования. И его можно оставить в покое, поскольку теперь обоснование есть. Но самое главное, у логарифмического распределения нет никаких «хвостов». А это значит, что некоторые методы расчетов должны быть пересмотрены.

Одним из таких расчетов является расчет вертикальных эшелонов для самолетов магистральных авиалиний. Сейчас эти эшелоны располагаются через 600 метров. Это означает, что самолеты, летающие на пересекающихся курсах, обязаны находиться на разных высотах с разностью высот в 600 метров. Однако сегодня уже понятно, что в некоторых районах мира, прежде всего в Европе, самолетов нужно пропускать больше, воздушного пространства не хватает. Поэтому остро стоит вопрос об эшелонировании через 300 метров.

Переход на эшелоны через 300 метров — задача тяжелая. Но самое первое, на что надо обратить внимание, это на обоснование допустимости (или недопустимости) такого перехода исходя из безопасности движения. Насколько автору было в свое время известно, в основу расчета были положены именно «хвосты» гауссовского нормального распределения, те самые «хвосты», которые не имеют к этой задаче никакого отношения.

Из этих «хвостов» следовало, что для сокращения эшелонов до 300 метров при допуске измерения высоты в 50 метров у каждого самолета нужно уменьшать погрешность измерения высоты с 50 до 20 метров. И тогда все вероятности отсутствия столкновений будут решены. А вот если таких «хвостов» нет, то весь расчет никуда не годится, как оно и есть на самом деле. Потому что здесь типичный случай поисков часов не на вокзале, где они потеряны, а под фонарем, где светлее.

Для определения безопасности эшелонирования надо не ужесточать требования к ошибкам высотомеров, что тоже, конечно, полезно, а налаживать систему контроля за полетами, а это совсем другая задача и другие меры. Столкновение самолетов при переходе из швейцарского воздушного пространства в германское, происшедшее летом 2002 года, показало, что может случиться при отсутствии правильного управления и контроля. Если бы на этих самолетах повысили точность измерения высоты, произошло бы все то же самое, потому что причина катастрофы заключается в халатности служб воздушного движения, а вовсе не в пог¬

197



Hosted by uCoz