![]() | ![]() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 | |
176 Глава 4. где £0 и ju0 соответственно диэлектрическая и магнитная проницаемости вакуума. Таким образом, налицо противоречие теории с реальностью. Обращает на себя внимание неполнота вывода третьего уравнения Максвелла (рис. 6.17). По осям х, у и z в объем dxdydz входят составляющие электрической индукции Dx, Dy, Dz. На выходе объема имеем соответственно (рис. 6.1): dDx, dDy, dDz Dx +-; Dy +-; Dz +-; (6.5) dx dy dz вычитая из которых входные составляющие, получаем уравнение 6.3, а затем и уравнение 6.2. Рис. 6.1. К выводу уравнений распространения электрической индукции В связи с тем, что изменение электрического смещения во времени при таком выводе не учтено, 3-е уравнение Максвелла никак нельзя признать полным. | Эксперименты в области электромагнитных явлений 177 На самом деле, на выходе объема составляющие вектора индукции будут равны: dDx, dDx, dDy, dDy dDz dDz Dx +--+--; Dy +--+-; Dz +--+--; (6.6) dx dt dy dt dz dt и соответственно 3-е уравнение Максвелла приобретет вид: dD divD +--= 0. (6.7) c dt где скорость с распространения волнового фронта связана с проекциями по осям координат выражением: 1 1 1 1 +--+-. (6.8) 2 2 2 с сх су с Полученное уравнение есть волновое уравнение первой степени, которое показывает, что электрическая индукция D распространяется в направлении вектора D, т.е. в продольном, а не поперечном направлении. Деление вектора D на вектор скорости с говорит о том, что эти вектора коллинеарны, т.е. параллельны друг другу. Решением уравнения 6.7. будет волновая функция: D(r - ct) = 0. (6.9) Отсюда вытекает, что диполь с сосредоточенными параметрами будет излучать энергию во все стороны (рис. 6.2), причем, если расстояние между пульсирующими зарядами (электродами) будет равно половине длины волны, то энергия вдоль оси диполя |