Ацюковский В.А. Начала эфиродинамического естествознания. Книга 5. Первые эфиродинамические эксперименты и технологии. М.:Петит, 2010. — 320 с. — ISBN 978-5-85101-035-4

В начало   Другие форматы   <<<     Страница 79   >>>

  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79 80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148  149  150  151  152  153  154  155  156  157  158  159  160  161  162  163  164  165  166  167  168  169  170  171  172  173  174  175  176  177  178  179  180  181  182  183  184  185  186  187  188  189  190  191  192  193  194  195  196  197  198  199  200  201  202  203  204  205  206  207  208  209  210  211  212  213  214  215  216  217  218  219  220  221  222  223  224  225  226  227  228  229  230  231  232  233  234  235  236  237  238  239  240  241  242  243  244  245  246  247  248  249  250  251  252  253  254  255  256  257  258  259  260  261  262  263  264  265  266  267  268  269  270  271  272  273  274  275  276  277  278  279  280  281  282  283  284  285  286  287  288  289  290  291  292  293  294  295  296  297  298  299  300  301  302  303  304  305  306  307  308  309  310  311  312  313  314  315  316  317  318  319  320 
Microsoft Word - 5_001_Титул5.doc

Исследования эфирного ветра

79

имеет наибольшую длину пути фильтрации L, равную длине кожуха. Согласно уравнению Бернулли, в части потока газа, движущегося с меньшей скоростью, давление наибольшее [22,23]. Следовательно, в части потока физического вакуума, движущегося в толще боковых стенок кожуха, давление выше, чем в прилежащих частях потока. Такая часть потока, с повышенным внутренним давлением, выполняет роль стенки трубы, которая, по отношению к кожуху интерферометра, разделяет поток физического вакуума на внешний и внутренний. Отсюда следует вывод, важный для дальнейшего анализа работы изготовленного интерферометра - защитный кожух интерферометра, изготовленный из пористого диэлектрического теплоизолирующего материала, по отношению к потоку физического вакуума исполняет роль направляющей системы. (Результаты экспериментальной проверки этого предположения приведены ниже в разделе "испытание интерферометра".) В таком случае, внешним по отношению к трубе 2 потоком физического вакуума следует считать движение физического вакуума во внутренней полости кожуха 12, в которой, как и в трубе 2, начиная с момента t0 , будет развиваться движение физического вакуума.

На рис. 8 в нормированном виде представлен результат расчета зависимости D(t)

О 5 10 t, sec

Рис.8. Изменение смещения полос интерференционной картины во времени

Microsoft Word - 5_001_Титул5.doc

80

Глава 3.

Ожидаемая длительность динамического режима работы интерферометра td» 10,3 сек. Величины D(tm) и td в предложенном методе измерения являются измеряемыми. Из рис. 8 следует, что для выполнения одноразового измерения величины смещения полос интерференционной картины D(tm) требуется время tsD = tm. Соответственно для одноразового измерения длительности динамического режима работы интерферометра td требуется время tsd = td. Относительно малые значения длительности одноразовых измерений величин D(tm) и td существенно облегчают требования к параметрам тепловой защиты интерферометра. Согласно рис.8 тепловая защита должна быть такой, чтобы при измерениях величины D(tm) скорость температурного дрейфа полос интерференционной картины VD не превышала значения VD = Dmm / tsD , или VD < 0,06 полосы/сек, а при измерениях длительности динамического режима работы интерферометра td величина VD не должна превышать значения VD = Dmin / tsd, или VD < 0,0048 полосы/сек.

Испытание интерферометра. Испытания включали в себя статические и динамические испытания жесткости конструкции изготовленного интерферометра и устойчивости интерферометра к тепловым воздействиям. На заключительном этапе испытаний измерено значение кинематической вязкости физического вакуума, что позволило экспериментально уточнить метрологические свойства интерферометра.

Жесткость интерферометра проверена двумя способами. По первому способу интерферометр устанавливался на твердой горизонтальной поверхности. Один из краев рамы поднимался так, что угол наклона плоскости рамы к плоскости поверхности достигал » 20°. В таком положении рамы смещение полос интерференционной картины, обусловленное упругими деформациями интерферометра, не превышало 0,3 полосы (D < 0,3). По второму способу жесткость интерферометра проверялась в собранном виде, в рабочем положении. Углы наклона интерферометра до 10° создавались наклоном предметного стола. Заметного смещения



Hosted by uCoz