![]() | ![]() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 | |
90 Глава 3. ми различных экспериментов, представленными на рис.9, дают основание положительно оценивать их достоверность. Измеренные значения анизотропии относительно невелики, и во многих практических случаях ими можно пренебречь. В этом смысле пространство вблизи земной поверхности можно считать изотропным с точностью зависящей от времени суток и от высоты над земной поверхностью. Результаты экспериментов, приведенные на рис.9 и рис.10, можно рассматривать как границы применимости представления об оптической изотропии пространства вблизи земной поверхности. Итоги настоящей работы дают возможность показать, что отрицательные результаты экспериментов [19,21] могут быть объяснены недостаточной чувствительностью примененных интерферометров. На рис.10 видно, что вблизи земной поверхности величина анизотропии не превышает 200 м/сек . Следовательно, в экспериментах [19,21], выполненных в подвальных помещениях, чувствительность интерферометров Wmm к величине анизотропии должна быть не хуже 200 м/сек. Подсчитаем чувствительность интерферометров, в экспериментах [19,21]. Будем полагать, что величине Wmm соответствует смещение интерференционных полос Dmm » 0,04. Такое смещение полос ожидалось наблюдать в эксперименте [21]. Из выражения (1) найдем Wm„ = c (Dmn Я1 '‘У'2. (43) В экспериментах [19], [21] длины лучей l составляли 2,4 м и 22 м, длины волн Я» 610-7м. С помощью выражения (43) получим, что в эксперименте [19] Wmm» 30000 м/сек, а в эксперименте [21] Wmm» 10000 м/сек . Следовательно, в экспериментах [19], [21] чувствительность интерферометров, была недостаточной. Результат только что выполненной оценки можно показать и более наглядно, если подсчитать длины лучей l, требуемые для построения крестообразного интерферометра | Исследования эфирного ветра 91 Майкельсона с чувствительностью к анизотропии скорости света Wmm » 200 м/сек. Из выражения (1) найдем I = Dlc2W"2. (44) Подставим в выражение (44) значения величин D = 0,04, Я» 610-7м; и W = 200 м/сек. Получим l » 54000 м, Можно предположить, что задача изготовить крестообразный оптический интерферометр с длинами лучей l » 54000 м скорее всего технически нереальная. Следовательно, в экспериментах [19] и [21] анизотропия скорости света не могла быть обнаружена, в силу единой инструментальной причины - в экспериментах применялись интерферометры второго порядка, обладавшие недостаточной чувствительностью. Уместно еще раз подчеркнуть преимущество метода измерения первого порядка, предложенного в настоящей работе. Можно подсчитать, что вблизи земной поверхности, при величине анизотропии скорости света » 200 м/сек и при прочих равных условиях, метод первого порядка, в полтора миллиона раз чувствительнее метода интерферометра Майкельсона второго порядка. Это обстоятельство затрудняет применимость интерферометра Майкельсона для изучения анизотропии скорости света вблизи земной поверхности. Выполненная оценка справедлива и по отношению к таким экспериментам как [8-11]. Кроме того, представленные выше итоги испытаний интерферометра, с трубами из различных материалов, рассчитанное и измеренное значения кинематической вязкости физического вакуума, позволяют предположить, что свойства потоков физического вакуума близки к свойствам потоков известных газов, огибать препятствия и течь в направляющих системах. В экспериментах [8-11] это обстоятельство могло быть причиной неудачных попыток выявить анизотропные свойства пространства с помощью приборов, заключенных в герметичные металлические камеры. |