![]() | ![]() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 | |
Исследования эфирного ветра 69 Прикладная механика. Киев: Институт механики НАН Украины- 2006. Т. 42, № 4. С. 46-61. 50. Купряев Н.В. Электродинамика с позиции стационарного эфира // Известия высших учебных заведений. Физика. Томск: Сибирский физико-технический институт. 2006. № 10. С. 8-18. 1.3.3. Оптический интерферометр для измерения анизотропии скорости света Ю.М.Галаев Институт радиофизики и электроники НАН Украины, г. Харьков Предложены метод и устройство для измерения анизотропии скорости света в вязких средах. Изготовлено измерительное устройство и выполнена его экспериментальная апробация. Результаты испытаний сопоставлены с итогами предшествующих экспериментов. Показаны наблюдаемость, воспроизводимость и повторяемость эффектов анизотропного распространения света. Устройство может использоваться для изучения течения газов в трубах. В настоящей работе для прямого измерения эффектов анизотропного распространения света предложены метод и устройство первого порядка действие которых основано на известных в гидродинамике законах развития течений вязких жидких и газообразных сред в трубах [22,23]. Принцип действия можно пояснить следующим. Поместим отрезок трубы в потоке газа так, что продольная ось трубы будет перпендикулярна вектору скорости потока. В этом случае оба открытых конца трубы находятся в одинаковых условиях по отношению к внешнему потоку газа. Перепада давления газа на концах трубы не возникает, и газ внутри трубы неподвижен. Теперь повернем трубу так, что вектор скорости потока газа направлен вдоль оси трубы. В этом случае скоростной напор газа создаст на концах трубы перепад давления, под действием которого в трубе развивается течение газа. Время развития течения газа в трубе и | 70 Глава 3. скорость установившегося течения газа определяются значениями кинематической вязкости газа, геометрическими размерами трубы и скоростью внешнего потока газа [22,23]. Важно отметить, что развитие течения газа в трубе, до установившегося значения скорости течения, занимает конечный отрезок времени. Рассмотренная идея дает возможность предложить метод измерения, чувствительный к анизотропии скорости света, и схему устройства для измерения величины анизотропии и кинематической вязкости физического вакуума. Так, согласно исходной гипотезе свойства физического вакуума определяют скорость распространения электромагнитных волн. Это означает, что скорость электромагнитной волны относительно наблюдателя является суммой векторов скорости волны относительно физического вакуума и скорости физического вакуума относительно наблюдателя. В этом случае, если построить оптический интерферометр, в котором один луч света проходит внутри полой трубы, а другой вне трубы, во внешнем потоке физического вакуума, и повернуть интерферометр в потоке физического вакуума, то можно ожидать, что на протяжении времени установления в трубе движения физического вакуума должно наблюдаться смещение полос интерференционной картины относительно их начального положения. При этом величина смещения полос будет пропорциональна скорости внешнего потока физического вакуума, т.е. величине анизотропии скорости света, а время возврата полос к их начальному положению, будет пропорционально значению кинематической вязкости физического вакуума. Предложенные метод и устройство измерений являются методом и устройством первого порядка, поскольку не требуется возвращать луч света в исходную точку. Рассмотрим возможность их реализации. Для описания движения физического вакуума в трубах воспользуемся математическим аппаратом гидродинамики, который развит в работах [22,23] для дозвуковых скоростей течений жидкостей и газов. |