168 Глава 6. i(2r2 +2rd + d 2) 4pr2 4p(r + d)2 4pr2(r + d)2 δe =δe1 +δe2 =+ = , (6.85) что приведет не к кубическому, а всего лишь к квадратичному затуханию напряженности по расстоянию вдоль оси диполя. Уравнениями Максвелла такой вариант не предусмотрен. Необходимо отметить, что при d = λ/2 основная мощность распространяется не в поперечном, а в продольном направлении, при этом плотность тока в среде не зависит от параметров среды, от площади электродов и от частоты тока, а только от величины излучаемого тока. На рис. 6.9 приведен электрический диполь с сосредоточенными параметрами, для которого выполнены необходимые построения вектора потока излучаемой мощности. Рис. 6.9. Излучение энергии диполем с сосредоточенными параметрами Отсюда следует не тривиальный вывод о том, что диполь с сосредоточенными параметрами способен излучать энергию вдоль своей оси, что, безусловно, противоречит выводам, вытекающим из уравнений Максвелла. Для диполя с сосредоточенными параметрами, состоящего из двух электродов, плотность тока в ближней зоне определяется путем геометрического суммирования соответственно двух токов с учетом, их знаков и запаздывания. Из суммирования токов видно, что распространение идет от диполя во все стороны, при этом по оси симметрии диполя волна электрической напряженности распространяется в поперечном направлении, а вдоль оси диполя — в продольном. При этом напряженность поля в каждой точке среды |
Электромагнитное поле 169 от ближнего электрода в ней будет больше, чем от дальнего. Эта разность напряженностей для симметричного диполя с расстоянием между электродами d составит для постоянного тока вдоль оси диполя δe = δe1 +δe2 = 3 - 3 , (6.86) ir i(r + d) 4pr3 4p(r + d)3 где r — расстояние от точки до ближнего электрода. Если d << r, то id δe = 3 . (6.87) 2pr По оси симметрии диполя имеем: | δ1 | = | δ2 |; r1 = r2 . (6.88) Из рисунка видно, что вдоль оси диполя векторы мощности, скорости распространения и электрической напряженности совпадают по направлению с направлением оси диполя, а поперек оси диполя вектор распространения мощности перпендикулярен оси диполя, а вектор электрической напряженности параллелен оси диполя и перпендикулярен направлению распространения мощности, как это и бывает в обычных радиоволнах. Основная мощность при этом излучается не поперек, а вдоль оси диполя. Как было показано выше, при развитии элементарной трубки электрического поля в продольном направлении на ее торце поток эфира перемещается в направлении, перпендикулярном ее оси. Следовательно, развитие электрического поля в пространстве во всех направлениях будет происходить со скоростью одинаковой и равной скорости распространения света в данной среде, независимо от значения вектора потока плотности мощности. Поэтому скорость распространения тока в среде будет той же, что и скорость распространения электрической индукции, т.е. |