Эфиродинамические основы структуры вещества 55 1. Поскольку ориентация частиц определяется тороидальным движением, то магнитный момент частиц отождествляется с тороидальным движением эфира на ее поверхности и определяется как произведение величин плотности эфира в окружающем пространстве ρэ, скорости света с, скорости тороидального движения на экваторе поверхности протона vт и объема протона Vp: mp = kprэcvT Sprp = k'rэcvTVp, (2.3) 2. Электрический заряд есть проявление кольцевого движения эфирных потоков на поверхности протона. Величина электрического заряда частицы представляет собой циркуляцию плотности эфира на поверхности пограничного слоя и составляет q, Кл = rэvко Sp, кг/с, (2.4) 3. Поскольку факт притяжения или отталкивания определяется ориентацией кольцевого вращения относительно тороидального, то полярность заряда следует отождествлять с ориентацией кольцевого движения относительно тороидального (т.е. со знаком винтового движения). 4. Поскольку сильное ядерное взаимодействие в ядре атома происходит между нуклонами, соприкасающимися своими пограничными слоями, то физической сущностью сильного ядерного взаимодействия следует считать прижатие нуклонов друг другу внешним давлением эфира вследствие падения давления эфира в межнуклонном пограничном слое в результате значительного градиента скоростей в пределах этого пограничного слоя. 5. Сущностью электромагнитного взаимодействия протонов является взаимное изменение давлений эфира на поверхностях нуклонов, производимое ими дистанционно. 6. Сильное ядерное и электромагнитное взаимодействия в своей основе имеют общий эфиродинамический механизм и различаются лишь величиной возникающих на поверхностях нуклонов снижений давления эфира вследствие различий в градиентах скоростей эфирных потоков в пространстве между нуклонами. 7. Несмотря на то, что в современной физике сильное ядерное взаимодействие нуклонов и их электромагнитное взаимодействие |
56 Глава 2. относятся к разным фундаментальным взаимодействиям и их константы взаимодействий разнятся на 36 порядков, на самом деле они имеют общий механизм. 2.4. Химические взаимодействия В 1927 г. датский физик О.Бурро выполнил квантовомеханический расчет молекулярного иона водорода Н2+ и показал, что единственный электрон в этом ионе занимает орбиталь, которая простирается вокруг обоих протонов. Теоретический расчет энергии связи этого молекулярного иона, т.е. разности между суммарной энергией отдельного атома и протона и энергией иона в его основном состоянии привел к значению 255 кДж/моль. С учетом того, что число молекул в моле составляет 6,022.1023 (число Авогадро) получаем, что энергия связи двух атомов в ионе молекулы составляет 4,23·10–19 Дж = 2,68 эВ на одну молекулу Н2+. Следует отметить, что так называемая энергия сродства атомов и молекул к электрону есть энергия связи электрона в соответствующем отрицательном ионе — минимальная энергия, затрачиваемая на отрыв электрона от атома или молекулы. Эта энергия составляет для иона водорода Н– 0,754 эВ, и для всех ионов лежит в пределах от 0,15 эВ (Сr–) до 3,62 эВ (Cl–), т.е. порядок величин составляет единицы и доли электронВольт. Для сравнения напомним, что энергия связи двух нуклонов = протона и нейтрона в ядре атома дейтерия составляет 2,3 МэВ, то есть на 6 порядков больше. Рассмотрим природу химических связей атомов в молекуле с позиций эфиродинамики. Присоединенные вихри различных атомов могут соединяться между собой лишь двумя способами (рис. 2.5). В первом случае (рис. 2.5а) вихри удерживаются относительно друг друга в общем пограничном слое, образованном благодаря противоположно направленным потокам эфира. Как было показано выше, благодаря градиенту скоростей между вихрями давление понижается, и внешнее давление эфира прижимает вихри друг к другу. Какого-либо преобразования вихрей, кроме изменения их формы, здесь не возникает. Данный случай соответствует ионной химической связи. |