Ацюковский В.А. Эфиродинамические основы электромагнетизма, 2-е изд. — М.:Энергоатомиздат, 2011. — 194 с. — ISBN 978-5-283-03317-4

В начало   <<<     Страница 27   >>>    1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148  149  150  151  152  153  154  155  156  157  158  159  160  161  162  163  164  165  166  167  168  169  170  171  172  173  174  175  176  177  178  179  180  181  182  183  184  185  186  187  188  189  190  191  192  193  194 

Что такое электричество?

27

правильно изображать факты, ибо в изображение их у нее прокладывается традиционное толкование этих фактов».

В 1906 г. в известной работе «Теория электронов» [17] Г.Лоренц отмечает:

«Хотя уравнения (электромагнитного поля — В.А.) являются полезными при рассмотрении многих задач, они не могут быть применены во всех без исключения случаях. Если бы даже это и имело место, наша теория перестала бы нас удовлетворять при попытке заглянуть глубже в природу явлений: действительно, ведь в этой общей теории мы выражаем особенные свойства различных весомых тел, просто приписывая каждому из них специальные значения диэлектрической постоянной, проводимости и магнитной проницаемости. Если мы хотим понять, каким образом (курсив мой — В.А.) электрические и магнитные свойства зависят от температуры, плотности, химического строения или кристаллического состояния вещества, то мы не можем удовлетвориться простым введением для каждого вещества этих коэффициентов, значения которых должны определяться из опыта: мы будем принуждены обратиться к какой-нибудь гипотезе относительно механизма, лежащего в основе всех этих явлений».

Следует с прискорбием констатировать, что успехи прикладных наук создали ныне существующей теории электромагнитных явлений и в особенности, теории Максвелла ореол абсолютной истинности, а современная теоретическая физика исключила представления о существования эфира в природе, вихревые движения которого рассматривались Максвеллом как основа электромагнитных явлений. Тем самым была исключена какая бы то ни было возможность дальнейшего углубления в понимание сущности электромагнитных явлений. Прямым следствием этого явилось то, что математические зависимости электродинамики, созданной Максвеллом более ста лет назад, практически никак не развивались.

Попытки некоторых исследователей что-либо изменить в этих уравнениях всегда оканчивались неудачей. Это дало основание Л.Больцману в своих примечаниях к переводу работы Максвелла «О физических силовых линиях» в 1898 г. написать [ 2, с.194]:

«Я мог бы сказать, что последователи Максвелла в этих уравнениях, пожалуй, ничего кроме букв не переменили. Однако это было бы слишком. Конечно, не тому следует удивляться, что к

28

Глава 1.

этим уравнениям вообще что-то могло бы быть добавлено, а гораздо более тому, как мало к ним было добавлено».

Сегодня, более ста лет спустя, это удивление Больцмана сохраняет свою силу: к уравнениям Максвелла практически не добавлено ничего, хотя за это время написаны сотни учебников по теоретическим основам электротехники, электродинамики и радиотехнике, решены тысячи прикладных задач, созданы разнообразнейшие устройства. Казалось бы, что нет никаких оснований возвращаться к этому вопросу. Однако это не так.

Во-первых, идеализированные представления о движениях эфирной жидкости привели к парадоксам в моделях электромагнетизма. В теоретических основах электромагнетизма накопилось множество недостатков, главным из которых является полное непонимание самой физической сущности электричества и электромагнитных явлений. Электрический заряд считается как бы врожденным свойством заряженных частиц, а сами электрические частицы не имеют никакой структуры и никакого строительного материала, они даже не имеют четкого размера. Не определена также и физическая сущность электрического и магнитного полей. Термин «поле — особый вид материи» ничего не объясняет и сводит всего лишь непонятное к неизвестному.

В теории электромагнетизма накопилось множество парадоксов, например, энергетический парадокс частиц, поскольку они не имеют размера, хотя имеют магнитный момент и заряд, то их энергия должна быть бесконечно большой.

которые имеют место в гидродинамике идеальной жидкости, например энергия единицы длины вихря равна бесконечности независимо от его интенсивности. В электродинамике возник парадокс, аналогичный рассмотренному: энергия единицы длины проводника с током равна бесконечности независимо от величины тока. Правда, поскольку одиночного проводника в природе не существует, появляется возможность разрешения этого парадокса за счет рассмотрения всей конструкции в целом, включая обратный проводник, тогда этот парадокс разрешается. Тем не менее, парадоксального положения не должно существовать ни для какой системы, в том числе и для условного одиночного проводника.

Имеются и некоторые другие недостатки существующих моделей: большинство из них не рассматривает взаимодействия вещества и электромагнитных полей, отрывая их тем самым друг от друга,



Hosted by uCoz