22 Эфиродинамика опирается на уже существующий модельный и математический аппарат газовой механики, поскольку на всех уровнях иерархической организации материи действуют одни и те же физические законы, а эфир оказался физической газоподобной средой со всеми свойствами обычного реального, т.е. вязкого сжимаемого газа. Кроме того, в ней нет ни постулатов, ни аксиом, есть только логика и материалистический метод изучения природы, заставляющий считаться со всеми природными явлениями, которые реально существуют. В этом проявились и новые возможности эфиродинамического подхода, поскольку эфиродинамика, продолжающая линию развития кинетической теории материи (Дж. Максвелл, Л.Больцман, Дж.Томсон, В.Ф.Миткевич, А.К.Тимирязев и др.) получила от смежной области — газовой механики весь наработанный модельный и математический аппарат. Не все проблемы в самом этом аппарате оказались решенными, но это все же основа, которой оказалось возможным воспользоваться для моделирования электромагнитных явлений. А поскольку все это механика, то модели оказались наглядными, вопреки утверждениям некоторых «ученых» о том, что никаких наглядных представлений для подобных явлений создано быть не может. Они ошиблись, модели созданы, и на их основе оказалось возможным не только понять физическую сущность основных электромагнитных явлений, но и уточнить некоторые уравнения, в том числе уравнения Максвелла, предсказать некоторые новые явления и проверить их в лабораторных, а некоторые и в натурных условиях. Эти новые явления, как говорили раньше, найдены «на кончике пера», т. е. предсказаны на основе новых модельных представлений о сущности явлений. Таким образом, эфиродинамика уже сегодня позволила в области электромагнетизма сделать еще один шаг, что, несомненно, окажется полезным и в прикладном аспекте. Но при всем этом это только начало очередного этапа развития учения об электричестве. |
23 Глава 1. Что такое электричество?1.1. Краткая история становления теории электромагнетизма Современной теории электромагнетизма предшествовал длительный период накопления знаний об электричестве и магнетизме [1-4]. В ХVII и XVIII вв. исследованию природы электричества были посвящены труды М.В.Ломоносова, Г.В.Рихмана, Б.Франклина, Ш.О.Кулона, П.Дивиша и других ученых. Решающее значение имело создание А.Вольта первого источника непрерывного тока. В первой трети ХIХ столетия были проведены многочисленные исследования химических, тепловых, световых и магнитных явлений, вызываемых электрическим током (труды В.В.Петрова, Х.К.Эрстеда, Д.Ф.Араго, М.Фарадея, Дж. Генри, А.М.Ампера, Г.С.Ома и других). Во второй половине XIX в. эти работы получили многочисленные практические внедрения во многих разработках, нашедших широкое применение в промышленности. И при всем этом практически никто не знает, какова суть электричества и магнетизма, что они собой представляют, в чем заключается их физическая природа. Нужно сказать, что в XIX в. были предприняты некоторые попытки разобраться в вопросе о том, что же представляют собой электричество и магнетизм физически, из чего они состоят и как они устроены. Так или иначе, все они были вынуждены привлечь к рассмотрению представления об эфире, движения которого, по их мнению, и лежали в основе электромагнетизма. М.Фарадей выдвинул предположение о существовании силовых трубок электричества («Фарадеевы силовые линии») [5]. Представления об электромагнитных явлениях как о вихревых движениях эфирной жидкости были сформулированы Г.Гельмгольцем [6], В.Томсоном [7], Челлисом [8], Максвеллом [9], а также некоторыми другими авторами — Хевисайдом [10-11], Кемпбеллом [12], Лармором [13], Ланжевеном [14], Абрагамом [15] и др. Значительный вклад в понимание процессов, связанных с прохождением электрического тока по проводам внесли немецкий физик П.Друде [16], создавшим электронную теорию проводимости металлов, и нидерландский физик Г.Лоренц [17] существенно развивший и до- |