7 Введение — Что такое электричество? — спросил профессор. — Я знал, но забыл, — ответил студент. — Какое несчастье! — воскликнул профессор. — Никто в мире не знает, что такое электричество. Один человек знал, и тот забыл! Когда вспомните, расскажите, пожалуйста, нам, мы тоже хотим это знать! Старый анекдот «Эфирная теория… дает надежду выяснить, что является собственно субстратом электрического движения, что собственно за вещь вызывает своими движениями электрические явления». Ф.Энгельс [1] Как известно, развитие теории электромагнетизма прошло этапы: – стихийного накопления фактов; – опытного накопления фактов; – попыток создания физических теорий, объясняющих электромагнетизм; – попыток создания физических и математических теорий, описывающих электромагнитные явления и позволяющих создать методики их расчета; – обобщения физических и математических теорий электромагнетизма и создания единой математической теории; – экспериментальных исследований, имеющих целью проверку и подтверждение положений общей теории; – внедрения полученных результатов в широкую практику. На базе многочисленных опытных данных были разработаны методы расчетов, позволившие точно рассчитать силовые и слаботочные устройства и агрегаты, линии передачи и электрические цепи. А в ХХ столетии на базе полученных к этому времени знаний были созданы важнейшие отрасли современной промышленности — электромашиностроение, радиотехника и электроника, без которых немыслимо существование современного человечества. Положение о том, что «нет ничего более прикладного, чем хорошая теория», полностью себя оправдало на практике. Учение об электричестве и магнетизме нашло воплощение в единой теории, получившей название электродинамика и объеди- |
8 няющей электрические и магнитные явления. Ни у кого нет сомнения в том, что именно эта область науки обеспечила развитие многих областей прикладной науки и промышленности. Достижения теоретического, а самое главное, прикладного плана столь величественны и настолько органично связаны с самой теорией электродинамики, что практически ни у кого не возникает сомнений в верности всех ее положений. Такие основополагающие разделы теории, как законы Ома, Кирхгофа, Ампера, Фарадея, уравнения Максвелла, теорема Гаусса и многие другие, получили всестороннюю проверку жизнью и поэтому заслужили всеобщее признание. В связи с этим любые сомнения, связанные с каким-либо фундаментальным положением электродинамики, специалистами отметаются даже без рассмотрения. Все эти положения давно приобрели силу догматов, и сама постановка вопроса об их неполноте вызывает раздражение, поскольку в электродинамике, а отсюда и в электротехнике все ясно. Тем не менее, в теоретических основах электромагнетизма накопилось множество недостатков, главным из которых является полное непонимание физической сущности электричества и электромагнитных явлений. Электрический заряд считается как бы врожденным свойством заряженных частиц, а сами электрические частицы не имеют никакой структуры и никакого строительного материала, они даже не имеют четкого размера. Не определена также и физическая сущность электрического и магнитного полей. Термин «поле — особый вид материи» ничего не объясняет и сводит всего лишь непонятное к неизвестному. В теории электромагнетизма накопилось множество парадоксов, например, энергетический парадокс частиц: поскольку они не имеют размера, хотя имеют магнитный момент и заряд, то их энергия должна быть бесконечно большой. Имеющиеся на сегодня теоретические знания в области электротехники позволили разработать методы расчетов электрических и магнитных устройств и систем, используя которые разработчики создали все эти устройства и системы, по-прежнему не представляя физических основ их работы. Тем не менее, обширная положительная практика создала впечатление о законченности науки электромагнетизма, об ее совершенстве. Это особенно относится к уравнениям электродинамики, разработанным Дж.К.Максвеллом во второй половине 19-го столетия [2]. Эти уравнения оказались |