Электромагнитное поле 173 которых направление распространения совпадает с направлением вектора электрической напряженности; - возможность прохождения продольных электрических волн в морской воде как чисто активной среде, поскольку реактивная составляющая среды только сравняется с активной при частоте не мнее 800 МГц; - определение зависимости активных потерь от площади излучающих электродов; - необходимость создания излучающего генератора мощностью в несколько сотен Ватт, способного излучать высокочастотную (мегаГерцы) энергию в низкооомную (единицы Ом) нагрузку; - необходимость создания специальных кабелей, способных передавать мощное высокочастотное электрическое излучение от генератора к электродам; - необходимость выявления способов передачи высокочастотной мощности от генератора к электродам с учетом их распределенной индуктивности и емкости (без специальной подстройки энергия к электродам не поступает); - необходимость создания приемника, способного принимать высокочастотные сигналы, выраженные нановольтами; - необходимость согласования входа приемника с низкоомной средой, в которой сигнал выражен нановольтами, а также ряд других. Все перечисленные проблемы были решены, хотя с перерывами, на это потребовалось порядка 30 лет, поскольку все эти работы носили не плановый характер. Особую трудность представила проблема сопряжения генератора и приемника с параметрами среды — морской воды. Дело в том, что нагрузка на генератор со стороны среды составляет единицы Ом, но основную трудность представляет задача передачи энергии от генератора на электроды через кабели, распределенная индуктивность которых составляет несколько микроГенри, а распределенная емкость на воду несколько сотен пикоФарад. Выход нашелся в том, что последовательно с кабелями на выходе генератора был установлен последовательный контур из проволочной катушки, индуктивность которой значительно превышала индуктивность кабеля, рабочее напряжение высокочастотных конденсаторов составляло более 10 кВ, они имели разную емкость и могли подключаться параллельно друг другу. В приемнике нужно было установить подобное устройство, но этого сделано не было, так что аппаратура была существенно недоиспользована. Тем не менее, в целом результаты оказались положительными. |
174 Глава 6. После проведения всех работ, создания аппаратуры и проведения предварительных исследований в различных базах Черного моря результаты были предъявлены специально созданной Комиссии с выездом Комиссии на побережье Черного моря в район Феодосии. Созданный с помощью Института электродинамики (Киев) генератор излучал электрические колебания частотой 1 МГц с двойной модуляцией в 1 кГц и импульсной модуляцией меандром с частотой в 1 Гц и мощностью до 400 Вт. Разработанный в Филиале ЛИИ приемник был настроен на прием несущей частоты в 1МГц. Генератор и приемник были размещены каждый в своем герметичном текстолитовом контейнере, там же располагались серебряно-цинковые аккумуляторы, обеспечивающие автономное питание аппаратуры. Питание включалось через замыкание герметичных выводов контейнера. По торцам каждого контейнера были вделаны два латунных герметичных вывода, к которым подключались кабели, соединяющие генератор и приемник с плоскими электродами, погружаемыми в воду. Излучающие электроды представляли собой плоскую пластину нержавеющей стали толщиной в 1 мм и площадью в 1 кв. м. Приемные электроды были аналогичными. Контейнер с генератором Поверхность пирса L Электрод Дно моря Электрод Рис. 6.18. Расположение генератора на пирсе Схема расположения генератора приведена на рис. 6.18. На поверхности пирса был установлен текстолитовый контейнер с генератором, питающимся серебряно–цинковым аккумулятором и согласующим резонансным устройством (дополнительная индуктивность, включенная последовательно с кабелем и набор высокочастотных высоковольтных конденсаторов). Последовательный резонанс настраивался при снятой крышке по максимуму тока, затем крышка закрывалась и питание выключалось внешним выключателем. Второй |