Ацюковский В.А. Эфиродинамические основы электромагнетизма, 2-е изд. — М.:Энергоатомиздат, 2011. — 194 с. — ISBN 978-5-283-03317-4

В начало   <<<     Страница 34   >>>    1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148  149  150  151  152  153  154  155  156  157  158  159  160  161  162  163  164  165  166  167  168  169  170  171  172  173  174  175  176  177  178  179  180  181  182  183  184  185  186  187  188  189  190  191  192  193  194 

34

Глава 1.

ке. Это будет достигнуто, если представлять рассматриваемые кривые не просто линиями, но трубками с переменным течением, по которым течет несжимаемая жидкость».

И далее:

«Субстанции, о которой здесь идет речь, не должно приписываться ни одного свойства действительных жидкостей, кроме способности к движению и сопротивлению сжатию. …Употребление термина «жидкость»… означает только воображаемую субстанцию со следующим свойством:

Любая часть жидкости, занимающая в какой-либо момент времени данный объем, в каждый последующий момент времени будет занимать такой же объем. Этот закон выражает несжимаемость жидкости и дает нам удобную меру ее количества, а именно ее объем.».

И далее, основываясь на свойствах этой гипотетической жидкости, Максвелл использует наработки многих авторов, создавших в то время некоторые основы движения идеальной жидкости, среди которых (всего их 24) нужно упомянуть Г.Гельмгольца [6], разработавшей основы теории вихревой жидкости, а также Вильяма Томсона [7]. Эти представления позволили Максвеллу разработать свои знаменитые уравнения электродинамики, которые явились теоретической базой для создания расчетных методов всех известных сегодня электрических и магнитных явлений.

Однако некоторые авторы, спустя несколько десятков лет, обратили внимание на неполноту уравнений Максвелла. Так Н.П.Кастерин в своей работе «Обобщение основных уравнений аэродинамики и электродинамики» [19] указывает, что «Система основных уравнений электромагнитного поля Максвелла, установленная 75 лет тому назад, несомненно, не в состоянии обнять все явления электромагнетизма, известные в настоящее время. С нашей точки зрения уравнения электромагнитного поля Максвелла только первые приближения, и их недостаточность в настоящее время происходит от того, что точность современных измерений в электротехнике неизмеримо возросла по сравнению с временами Фарадея, Максвелла, Герца со времени их установления. То же самое справедливо по отношению к уравнениям гидродинамики, данным 180 лет назад Эйлером и формально распространенным на случай движения газов: они явно недостаточны для представления тех быстрых движений воздуха, с которыми приходится иметь дело в

Что такое электричество?

35

авиации, особенно для вихревых движений. Уравнения Эйлера также представляют собой только первые приближения».

С этим утверждением нужно согласиться, поскольку любые уравнения отражают явление всегда приближенно и не учитывают тех сторон явлений, которые не поставлены исходной целью исследований.

На возможность моделирования бесциркуляционных и циркуляционных потоков жидкости обратил внимание в 1969 г. профессор Ленинградского института водного транспорта Г.А. Рязанов в своих фундаментальных работах «Опыт и моделирование при изучении электромагнитного поля» (М.Наука, 1966) и «Электрическое моделирование с применением вихревых полей» (М.Наука, 1969) [26]. Таким образом, правомерность использования аналогий между электромагнетизмом и гидродинамикой широко подтверждена практикой.

Однако все это касалось представлений об электрическом и магнитном полях как об идеальной жидкости, т.е. жидкости не вязкой и несжимаемой. Эфиродинамикой же показано, что строительный материал этих полей — эфир на самом деле является газоподобной средой, способной сжиматься и изменять свою плотность в широчайших пределах, это обстоятельство практически никогда и никем не было учтено [27]. Но именно это позволило объяснить сущность электрического заряда, уточнить энергетическое содержание электрического и магнитного полей и наметить пути для получения энергии из окружающего нас пространства.

Современная физика называет газ «сжимаемой жидкостью», что принципиально неверно, потому что газ обладает рядом свойств, которыми жидкость вовсе не обладает, например, наличием пограничного слоя в градиентных течениях, способностью вихрей самопроизвольно аккумулировать энергию из окружающего вихрь пространства и некоторыми другими. Это обстоятельство позволяет, с одной стороны, выяснить строение электрического и магнитного полей более полно, чем это можно сделать на базе аналогий с жидкостью, с другой стороны предсказать и проверить ряд явлений, до настоящего времени изученных недостаточно, а с третьей — найти новые направления исследований, некоторые из которых, несомненно, имеют перспективу, как в научном, так и в прикладном аспектах.



Hosted by uCoz