Ацюковский В.А. Эфиродинамические основы электромагнетизма, 2-е изд. — М.:Энергоатомиздат, 2011. — 194 с. — ISBN 978-5-283-03317-4

В начало   <<<     Страница 117   >>>    1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148  149  150  151  152  153  154  155  156  157  158  159  160  161  162  163  164  165  166  167  168  169  170  171  172  173  174  175  176  177  178  179  180  181  182  183  184  185  186  187  188  189  190  191  192  193  194 

Физическая сущность электромагнитных взаимодействий 117

ными, ЭДС в них возникает в результате пересечения их силовыми линиями магнитного поля, создаваемого током первичной обмотки. С вторичных обмоток преобразованное по величине напряжение передается потребителям энергии.

Трансформатор с железным сердечником вследствие значительного увеличения коэффициента связи между обмотками позволяет при существенно меньших габаритах, чем трансформатор без сердечника, преобразовывать значительно большие мощности.

Расчет трансформатора основывается на законе Фарадея

Е = - µµ SдB / д t, (531)

где е — эдс, возникающая на обмотке, намотанной на железном сердечнике, площадь поперечного сечения которого равна S и материал которого имеет относительную проницаемость µ; дB/дt — скорость изменения магнитной индукции в сердечнике. Обычно расчет обмоток трансформаторов производится по другой формуле, вытекающей из закона Фарадея:

2 (5.32)

е = — 2π µµ0w f I S / l ,

где е — ЭДС на обмотке, µ — относительная магнитная проницаемость железного сердечника, µ0 — маггнитная проницаемость вакуума, w — количество витков обмотки, f — частота питающего напряжения или тока, I — амплитуда переменного тока, S — площадь сечения сердечника, l — средняя длина силовой линии магнитного потока в сердечнике.

Коэффициент трансформации k при ненасыщенном сердеченике при этом определяется как отношение числа витков вторичной обмотки w1 к числу витков первичной обмотки w2 (в некоторых справочниках он определен как обратная величина):

k = w 1/w2 = U1/U2. (5.33)

Здесь U 1 и U2 — напряжения на первичной и вторичной обмотках соответственно при отсутствии нагрузки на вторичной обмотке трансформатора (режим холостого хода).

При анализе принципа работы трансформатора возникает серия вопросов:

118

1. Каким образом энергия передается магнитным полем из первичной обмотки во вторичную?

2. Какую роль играет железный сердечник для увеличения коэффициента связи между первичной и вторичной обмотками?

3. Почему при снижении сопротивления нагрузки во вторичной обмотке и увеличении вследствие этого в ней тока растет соответственно ток в первичной обмотке, т.е. каков механизм влияния тока во вторичной обмотке на величину тока в первичной обмотке?

Ответ на первый вопрос принципиально рассмотрен выше при анализе электромагнитной взаимосвязи проводников. Электроны в первичном проводнике под воздействием внешней ЭДС ориентируют свои оси кольцевого вращения (спин) вдоль проводника, в результате чего вокруг проводника возникают кольцевые линии магнитного поля, составленные из примыкающих друг к другу кольцевых винтовых тороидов. Эти потоки распространяются во внешнее пространство. Если поток эфира, направленный перпендикулярно оси проводника, статичен, то все давления на поверхности электрона уравновешены (рис. 5.5а) и никакой принудительной ориентации он не подвержен. Если же поток эфира не стационарен, то в проводнике возникает градиент скоростей потоков эфира, это приводит к неуравновешенным давлениям на поверхности электрона и создается момент сил, ориентирующий электрон таким образом, чтобы его главная ось (спин) ориентировалась по оси вторичного проводника (рис. 5.5б). Таким образом, идет процесс передачи ЭДС из первичного проводника во вторичный.

Рис. 5.5. Воздействие потока эфира на электрон в проводнике: а — электрон в стационарном потоке эфира; б — электрон в градиентном потоке эфира.

Если вторичный проводник разомкнут, то возникшая ЭДС концентрирует электроны на одном из концов проводника. Тороидаль-



Hosted by uCoz