Ацюковский В.А. Эфиродинамические основы электромагнетизма, 2-е изд. — М.:Энергоатомиздат, 2011. — 194 с. — ISBN 978-5-283-03317-4

В начало   <<<     Страница 20   >>>    1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148  149  150  151  152  153  154  155  156  157  158  159  160  161  162  163  164  165  166  167  168  169  170  171  172  173  174  175  176  177  178  179  180  181  182  183  184  185  186  187  188  189  190  191  192  193  194 

20

материи, все остальные «законы» носят частный характер. Это значит, что эти «законы» есть всего лишь первое приближение к истине, ибо каждое конкретное явление имеет бесчисленное множество свойств и поэтому может быть описано только приближенно. Чтобы описать любое явление во всей полноте нужно составить бесчисленное множество уравнении с бесчисленным количеством членов в каждом из них, а это не только невозможно, но и не нужно. Поэтому абсолютно точных уравнений частных законов просто не существует и существовать не может. Это касается даже таких фундаментальных законов, как Закон всемирного тяготения И.Ньютона или законы небесной механики. Но это же касается и уравнений Максвелла и любых других законов электротехники, радиотехники и электроники. Каждый «закон» отражает лишь частное явление, определенное конкретной целью, и отражает только с определенной степенью точности, поскольку не может учесть все особенности, все нелинейности, все второстепенные детали, которые неминуемо в нем скрыты.

За прошедшие более ста лет в области теории электромагнетизма практически не создано ничего нового. Поэтому не должно быть негативного отношения к попыткам перепроверить уже известные законы, поставить новые эксперименты или найти новые функциональные зависимости, связывающие физические величины. Наоборот, именно это и является целью науки. Это же касается и теоретической электротехники.

Человечество эксплуатирует достижения великих ученых 19-го столетия более полутора веков. Они оказались исключительно полезны, но они же не открыли и многое, что еще предстоит открыть и использовать на благо людям. А некоторые открытые явления оказались утраченными, примером является электротехника Николы Тесла, достигнувшего результатов, которые сейчас, сто лет спустя никто не может воспроизвести, потому что это другая электротехника, основанная на других законах, которые теперь нужно находить заново.

Обо всех физических явлениях мы мыслим моделями, то есть, теми или иными представлениями о физических процессах, происходящих в этих явлениях. Но это всего лишь наши представления, не всегда верные. Эти процессы мы описываем математически, внося и в эти описания дополнительные неточности. Но это, все же, путь раскрытия этих законов. Но когда теоретики не строят физи-

21

ческих моделей, а пытаются из одних и тех же уже открытых законов выявить новые следствия, то такой путь заведомо обречен на неудачу: новое можно найти, только привлекая новые представления, новые факты и ставя новые эксперименты.

Сегодня в области теоретического электромагнетизма мы сталкиваемся с тем же консерватизмом, который поразил всю теоретическую физику: сама попытка найти что-то новое в области электромагнетизма наталкивается на обструкцию специалистов. Это неправильно.

В настоящее время вся наука находится в кризисе, связанным именно с консерватизмом специалистов, считающих, что все уже сделано и все давно ясно. На самом деле мы находимся перед всплеском новых поисков и открытий во всех областях естествознания, включая электротехнику, радиотехнику и электронику. Есть основания полагать, что эфиродинамический подход окажет серьезную помощь таким поискам. А их результатом будет не только уточнение уже существующих законов, но и в некоторых случаях их полный пересмотр.

Видимо, и здесь придется за дело браться прикладникам, перед которыми возникают практические задачи и которым по этой причине теория, отражающая реальные природные процессы, нужна больше, чем ученым-теоретикам.

В предлагаемой книге сделана попытка для понимания сущности электромагнитных явлений привлечь эфиродинамические модели, в основе которых лежат движения эфира — физической среды, заполняющей все мировое пространство и являющейся строительным материалом для всех без исключения материальных образований, включая вещество, электрическое и магнитное поля. Именно движение потоков эфира, в которых образуются градиенты давлений, оказывается той физической основой, которая и обеспечивает все те явления, которые наука относит к категории электромагнитных явлений [2].

Разумеется, эфиродинамические модели, как и всякие физические модели, тоже не отражают и не могут отражать электромагнитные явления во всей полноте, тем не менее, по сравнению с современными представлениями это шаг вперед, причем шаг существенный.

Эфиродинамика есть раздел механики и, так же, как и вся механика она оперирует перемещениями масс в пространстве.



Hosted by uCoz