62 Рис. 2.10. Структура «поверхности Ферми» Какова может быть структура электрона? Это может быть только вихревой эфирный тороид, знак винтового движения эфира в теле электрона должен быть противоположным знаку винтового движения эфира в теле протона. Если в протоне реализовано движение правовинтовое, то в электроне левовинтовое или наоборот. Какие именно они на самом деле, предстоит выяснить в будущем. Электрон должен иметь переменные размеры в зависимости от окружающих условий. В свободном пространстве сжатие его эфиром будет происходить до тех пор, пока не наступит равновесие между его внутренним и центробежным давлением и давлением внешним. Предполагая, равенство критических плотностей эфира в протоне и свободном электроне можно предположить, что размер электрона составит D =D 3/m /m ~ 10 16м . пр V пр Но в металле этот размер может изменяться в широких пределах в зависимости от того, в какие потоки эфира, создаваемые атомами металла, он попадет: чем интенсивнее поток эфира, т.е. чем больше плотность эфира в потоке и чем выше его скорость, тем больше будет снижаться давление эфира на поверхности электрона и тем больше станет размер электрона. При выходе электрона из металла в свободное пространства он сожмется давление окружающего эфира до указанной выше величины. Поскольку электрон находится в непрерывном тепловом движении внутри металла, он соударяется с молекулами. отбрасывается по законам прямого соударения и после каждого удара меняет свою ориентацию в пространстве. Поэтому все электроны в металле, находясь в непрерывно движении, в среднем ориентированы хаотично, что и объясняет тот факт, почему вокруг металлических образцов, не подключенных к источникам напряжения, нет магнитного поля. |
Эфиродинамические основы структуры вещества 63 Согласно электронной теории, свободные электроны в металлических проводниках образуют электронный газ. Двигаясь хаотично в межатомном пространстве тела проводника, электроны соударяются с поверхностями атомов и молекул, обмениваясь с ними импульсами и тем самым поддерживая общую для всего тела температуру. Именно наличие и подвижность электронного газа обеспечивает высокую теплопроводность металлических проводников. Однако при этом возникают вопросы, что представляет собой теплота твердого тела, в чем заключается механизм температуры твердого тела, что является в твердом теле носителем теплоты и чем физически теплота твердого тела отличается от теплоты газа. В соответствии с электронной теорией свободные электроны, двигаясь хаотически между молекулами тела, непрерывно обмениваются с ними импульсами, чем способствуют выравниванию температуры в металле с высокой скоростью, что и отличает металлы от неметаллов — высокое значение коэффициента теплопроводности. Тепловая скорость перемещения электронов в металле определится выражением 2 3&Г Ve =------, (2.5) т e где тe = 0,9108· 10–30кг — масса электрона, откуда находим, что при температуре 20°С (293,3°К) средняя скорость теплового движения электрона составит 115,45 км/с. Имея в виду, что количество электронов в металле должно быть равно количеству атомов, то их число в единице объема, как и атомов, составляет порядка n =1028-1029 м–3. Если бы электронный газ существовал сам по себе, то средняя длина свободного пробега электрона была бы равна X = j=------, (2.6) Aj2n<Je где ае - площадь поперечного сечения электрона, величина которой составляет около 10–30 м2. Следовательно, длина свободного пробега должна была бы иметь величину порядка единиц метров, в то |