Электромагнитное поле 145 нить невозможно, а привнесение дополнительного заряда есть процесс дополнительный, который описывается уже совсем иначе. Тем не менее, математическое описание все равно должно предусматривать наличие запаздывающего потенциала, а этого в уравнении нет. Кроме того, в уравнении следовало бы также определить причинно-следственные отношения в виде соответствующего их написания: Фе = §DdS Ü q, (6.31) а также D Ü q/4πR 2. (6.32) Четвертое уравнение Максвелла div B = 0 (6.33) и соответствующее ему интегральное уравнение — теорема Остроградского–Гаусса для магнитного поля ФМ = §BdS = 0 М J (6.34) не вызывают особых возражений, кроме, разве что, своей недостаточности, так как они также фиксируют некоторую статику, кроме того, в них также отсутствует временной фактор. Четвертое дифференциальное уравнение Максвелла тоже без всякого обоснования помещается в учебниках в раздел динамики. Интегральная же форма, помещаемая в раздел статики, выражает тот очевидный факт, что магнитные силовые линии всегда замкнуты: сколько их вышло из замкнутой поверхности, столько же и должно войти в нее. Временных процессов она не отражает. Таким образом, динамические процессы, протекающие в электромагнитном поле, отражаются не всеми четырьмя уравнениями Максвелла, а только первым и половиной второго, причем первое уравнение не отражает реального процесса возникновения ЭДС в проводнике при изменении во времени магнитного поля. Первая же половина второго уравнения Максвелла, а также третье и чет- S |
146 вертое уравнения являются уравнениями вихревой статики и, в принципе, к электродинамике отношения не имеют. И первое, и второе уравнения Максвелла игнорируют поля, находящиеся вне контуров. Однако соседние однонаправленные вихри, имея на своей периферии в сопредельных областях потоки среды — эфира противоположного направления, создают взаимную компенсацию полей (рис. 6.2). Рис. 6.2. Компенсация полей: а — магнитного поля в распределенной системе токов; б — электрического поля в распределенной системе магнитных потоков Это обстоятельство не учтено первыми двумя уравнениями. Если бы это учитывалось, то, как электрическая, так и магнитная напряженности не всегда были бы одними и теми же для первого и второго уравнений. Наконец, все уравнения Максвелла выведены из предположения об идеальности эфира и, следовательно, подразумевают отсутствие у него вязкости и сжимаемости. В таком эфире вихри не могут ни образовываться, ни исчезать, что полностью не соответствует опытным данным: напряжения и магнитные поля возникают и исчезают, но это не заложено в физику уравнений. В физику уравнений Максвелла также не заложена сжимаемость полей, непосредственно вытекающая из сжимаемости эфира. Полученные Максвеллом уравнения электромагнитного поля на основе гидромеханических представлений электромагнитных явлений и их всесторонняя апробация во многих практических приложениях подтверждают правомерность метода аналогий, использованного Максвеллом, и, казалось бы, из этого не вытекает необходимость какого-либо уточнения уравнений электродинами- |