Ацюковский В.А. Эфиродинамические основы электромагнетизма, 2-е изд. — М.:Энергоатомиздат, 2011. — 194 с. — ISBN 978-5-283-03317-4

В начало   <<<     Страница 99   >>>    1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148  149  150  151  152  153  154  155  156  157  158  159  160  161  162  163  164  165  166  167  168  169  170  171  172  173  174  175  176  177  178  179  180  181  182  183  184  185  186  187  188  189  190  191  192  193  194 

Эфиродинамическая сущность электромагнетизма 99

сердечника, то эти связи напрягаются подобно пружине, и если внешний поток исчезнет, то они вернут домен в исходное положение. Магнитное поле, созданное сердечником, исчезнет. Так обстоит дело с магнитомягким материалом.

Для магнитотвердого материала дело обстоит иначе. Если сопротивление связей доменов в материале удается преодолеть внешним потоком, то они могут и не возвратить домен в исходное состояние. Тогда магнитное поле сохранится и после отключения тока из обмотки соленоида.

Но наиболее простым способом ослабления связей доменов с материалом является, как известно, нагрев магнитотвердого материала вплоть до его расплавления. Тогда внешнее магнитное поле легко ориентирует домены в нужном направлении, а затем, после остывания материала, межмолекулярные связи закрепляют домен в этом положении. Материал становится постоянным магнитом.

При наличии железа в дросселе общая запасенная энергия магнитного поля будет пропорциональна объему железа:

mmo(iw)2 2l2

W= o2 Vж. (4.33)

Поскольку объем железа дросселя составляет Vж = Sжlж , где Sж — сечение сердечника, а lж — длина магнитной силовой линии в сердечнике, то получим

mmo(iw)2 2l2

W= o2 Sжlж, (4.34)

где µ — относительная магнитная проницаемость железа. После сокращений будем иметь:

mmo (iw)2 Sw2i2 i2

W= S =mmo =L, (4.35)

2lж 2 2

где

Sw2 w2 lж

L=mmo = ;Rм = . (4.36)

lж Rм mmoSж

Здесь Rм — магнитное сопротивление сердечника.

100

Глава 4.

Таким образом, получена обычная формула для индуктивности катушки с железным сердечником.

Из изложенного видно, что роль железного сердечника в индуктивности сводится к тому, что в нем запасается реактивная энергия магнитного поля. Но для того чтобы эту энергию в нем создать, необходимо совершить работу, т. е. произвести поворот доменов железного сердечника и для этого преодолеть упругое сопротивление их связей. Эта работа производится путем повышения давления в пространстве между проводником и железом. Само это давление создается электрическим током, текущим по проводнику. Поэтому общая запасенная энергия пропорциональна квадрату величины тока.

Энергия поступательной скорости эфира в вихревых трубках вокруг проводника, не имеющего железного сердечника, и есть энергия магнитного поля. Если есть железный сердечник, то сюда добавляется потенциальная энергия упругого поворота доменов сердечника. Вся эта система напряжена и удерживается в напряженном состоянии повернутыми в общем направлении — вдоль оси проводника — электронами. Сами же электроны удерживаются в этом состоянии напряженностью электрического поля.

Если электродвижущая сила в проводнике исчезает, то исчезает и причина, удерживающая электроны в общем ориентированном направлении, исчезает и давление, удерживающее потоки в напряженном состоянии. Равновесие нарушено, и весь процесс оборачивается в обратном направлении. Теперь внешние потоки эфира давят на внутренние, и линии кругового тока эфира, сокращаясь, входят в проводник. Их энергия тратится на увеличение тепловой скорости электронов проводника. В этом и заключается механизм самоиндукции.

Обратный ход процесса приводит к тому, что ЭДС на проводнике, создаваемая перемещающимися внутрь проводника потоками эфира, приобретает противоположный знак, эта ЭДС будет пропорциональная запасенной энергии индуктивностью, т.е. величине индуктивности, если же ток обрывается не сразу, то электроны еще сохраняющегося тока продолжает удерживать часть давления. Таким образом, на качественном уровне может быть обоснована известная формула ЭДС самоиндукции:



Hosted by uCoz