1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 | |
кой пяти лет насчитали 20 предметов - 19 конфеток и одного котенка. Однако при этом мы не предполагали, что все они будут съедены. Но если бы была поставлена именно эта цель — съесть предметы, то в случае котенка возникли бы некоторые затруднения. Съедобных предметов оказалось бы меньше. Следовательно, в арифметической логике не хватает существенного момента — цели использования результата. Вторым условием является одинаковый подход ко всем элементам, подвергающимся общему арифметическому действию. Вы делите или умножаете предметы, предполагая, что ваш делитель или множитель одинаково воздействует на все эти предметы. Вообще-то это не факт, и заранее это неизвестно. Третьим условием является предположение, что использование результата никак не влияет на арифметический процесс. В Васином случае видно, что, оказывается, влияет. Вероятно, могут быть рассмотрены и другие обстоятельства, связанные с арифметикой. Что такое в конце концов арифметика, да и вся математика? Это определенный вид логики, а арифметика — один из ее разделов. Не ставя под сомнение ее полезность, хотелось бы, однако, обратить внимание на то, что даже в ней, изъезженной вдоль и поперек, есть место для дополнений и уточнений. 4 Бурная жизнь с------«многочлен»Когда-то в среднем студенческом возрасте автор столкнулся со степенным рядом. Нельзя сказать, чтобы автор сильно интересовался математикой, тем более душевными переживаниями отдельных членов этого математического ряда. Но когда обнаружилось, что закономерности развития степенного многочлена отражают собой не только математические, но и многие общественные законы развития общества, пришлось на эту тему поразмышлять. И оказалось, что поразмышлять есть о чем. Если каждый член такого степенного многочлена изобразить в логарифмических координатах, то сразу будет видно, что на таком графике он представляет собой прямую линию, наклон которой определяется степенью данного члена, и при разных значениях аргумента наибольшее значение имеет только один, максимум два одинаковых члена. Именно они и определяют значение всего многочлена при этом значении икса, остальные члены малы по сравнению с ними и погоды не делают. При другом значении аргумента общая величина многочлена будет определяться уже другим членом, который раньше был мал. Но вот что интересно: если какой-то член уже побывал в роли определяюще¬ 192 | го, самого главного члена многочлена, то он уже больше никогда к этой роли не возвращается, потому что пока он почивал в роли самого главного члена, подрастали другие члены, имеющие более высокие показатели степеней. А теперь если на графике вместо аргумента икс по горизонтали отложить ось времени, а по вертикали роль государств, выраженную, например, в степени влияния на мировую политику, то окажется, что вся мировая история ведет себя так же, как упомянутый степенной многочлен. Ну, в самом деле. Когда-то в древние времена мировое значение имел Египет. Это видно хотя бы из того, что во всех учебниках истории до сих пор начало цивилизации предполагается родом из Египта. Про предшествующие цивилизации мало что известно. Затем пошла Римская империя, и где-то в это время жалкие попытки составить ей конкуренцию пыталась Греция. Но затем окрепла Византия. Потом Османская империя, то есть Турция. В Западной Европе одно время могучую державу изображала из себя Португалия, а затем Испания. Но обуржуазившаяся Англия праведными и в основном неправедными путями доказала испанцам, что она, а не Испания владычица морей. Наполеоновская Франция попыталась ей воспрепятствовать, но ничего из этого не вышло, и Англия долго сохраняла за собой мировое первенство. Это уже потом, в XX веке ее родная дочь - Америка вышибла ее из этой роли, и теперь англичане утешаются тем, что бедность не порок. И история пока что подтверждает тот факт, что мировая держава, однажды побывав в роли определяющей ход мировой истории, больше к этой роли уже никогда не возвращается. А сейчас ход мировой истории определяют Соединенные Штаты Америки. И глядя на поведение степенных многочленов, соответствующее развитию истории, начинаешь задумываться: долго ли это будет продолжаться? И не пора ли великой державе США уступить свое место другим? Тем более что «благотворительная» политика Штатов многим действует на нервы, даже таким верным и благодарным их союзникам, как Германия и Япония, не говоря уж о России и Китае. А ведь если это случится, то США уже никогда не займут первенства в мире! 5 Вероятность и невероятностьТеория вероятностей в сегодняшнем мире приобрела большое значение. С ее помощью можно высчитывать вероятности несчастных случаев и страховочные компенсации, лотерейные выигрыши и 193 |