Ацюковский В.А. Начала эфиродинамического естествознания. Книга 2. Методология эфиродинамики, свойства эфира и строение вещества. М.:Петит, 2009. — 412 с. — ISBN 978-5-85101-029-3

В начало   Другие форматы   <<<     Страница 336   >>>

  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148  149  150  151  152  153  154  155  156  157  158  159  160  161  162  163  164  165  166  167  168  169  170  171  172  173  174  175  176  177  178  179  180  181  182  183  184  185  186  187  188  189  190  191  192  193  194  195  196  197  198  199  200  201  202  203  204  205  206  207  208  209  210  211  212  213  214  215  216  217  218  219  220  221  222  223  224  225  226  227  228  229  230  231  232  233  234  235  236  237  238  239  240  241  242  243  244  245  246  247  248  249  250  251  252  253  254  255  256  257  258  259  260  261  262  263  264  265  266  267  268  269  270  271  272  273  274  275  276  277  278  279  280  281  282  283  284  285  286  287  288  289  290  291  292  293  294  295  296  297  298  299  300  301  302  303  304  305  306  307  308  309  310  311  312  313  314  315  316  317  318  319  320  321  322  323  324  325  326  327  328  329  330  331  332  333  334  335  336 337  338  339  340  341  342  343  344  345  346  347  348  349  350  351  352  353  354  355  356  357  358  359  360  361  362  363  364  365  366  367  368  369  370  371  372  373  374  375  376  377  378  379  380  381  382  383  384  385  386  387  388  389  390  391  392  393  394  395 
Microsoft Word - 2_001_Титул2.doc

336

Глава 3.

порядков меньше внешнего, то и скорость, и плотность эфира во внутренних слоя должны быть многократно выше в этой области, чем во внешней части. Соответственно выше будет и градиент скорости потоков эфира.

Этого бы не было, если бы вихрь существовал сам по себе, тогда максимальная скорость потоков была бы в этой же области, но во внутренней части вихря. Однако движение здесь передается извне, поэтому по мере удаления от стенки скорость потока будет падать пропорционально второй степени расстояния, поскольку вихрь тороидальный, и площадь сечения возрастает пропорционально квадрату радиуса, а градиент скорости будет уменьшаться пропорционально кубу радиуса. Пропорционально квадрату радиуса будет уменьшаться и плотность эфира в этом потоке. Еще одну степень убывания добавит и падение давления эфира к центру этого же вихря. Если во второй присоединенный вихрь попадет вторая молекула или атом, то распределение давлений внутри этого вихря будет смещать их к внутренней границе вихря Ван- дер-Ваальса, поскольку с этой стороны общее давление потоков эфира меньше. Сила притяжения, т.е. сила, направленная от центра молекулы к пограничному слою, определится выражением

Fy = xpSdv/dy,    (3.1)

где х - коэффициент динамической вязкости эфира; р - плотность эфира в стенке второго присоединенного вихря; S - площадь взаимодействия молекул; dv/dy - градиент скорости в ближней зоне второго присоединенного вихря.

Получается, что убывание силы притяжения пропорционально примерно 6-й степени расстояния между молекулами, что и имеет место в реальности. При этом силы взаимодействия с потоками эфира на противоположных сторонах взаимодействующих молекул будут малы в силу высокой степени убывания и существенно не скажутся на общей силе притяжения взаимодействующих молекул.

Microsoft Word - 2_001_Титул2.doc

Молекулы и химические взаимодействия

337

Взаимодействующие молекулы устанавливаются на некотором равновесном расстоянии друг от друга. Попытки сблизить их и переместить в пограничный между вихрями слой вызывают силы отталкивания. Эти силы вызваны, во-первых, теми же причинами, что и выше, с той, однако, разницей, что в пограничном слое распределение скорости потоков, градиента и плотности потоков эфира имеют обратный знак и направлены к центрам молекул, а во-вторых, возрастанием давления в пограничном слое, в который первый присоединенный вихрь - электронная оболочка атома - загоняет внешний по отношению к ней эфир. Уменьшение сечения потока вызывает с одной стороны повышение давления эфира за счет его сжатия, с другой стороны, его же нагрев по той же причине, что также ведет к повышению давления в этой области. При этом силы притяжения будут падать, так как взаимодействующие молекулы будут выходить из зоны вихря и попадут в пограничный слой, в котором распределение скоростей также будет способствовать их отталкиванию. Поэтому степень зависимости силы отталкивания от расстояния здесь будет выше, чем степень зависимости силы притяжения в теле второго присоединенного вихря.

Представляет несомненный интерес образование связей, которые условно можно назвать агрегатными, - тип связей, обеспечивающих соединение молекул в некоторую агрегатную совокупность. Структуру такого типа связей можно проследить на примере соединения молекул воды в агрегаты (рис. 3.6).

Потоки эфира, возбуждаемые поверхностями двух протонов, соединенных с молекулой кислорода, направлены во внешнее относительно молекулы воды пространство под некоторым углом друг к другу. В результате создаются условия для образования двужгутика - двух винтовых вихрей, обвивающих друг друга. На некотором расстоянии вихри, образующие двужгутик, расходятся и далее возвращаются к протонам. В местах поворота вихрей образуются «карманы» - области пониженного давления эфира, что, вероятно, и обусловливает свойства воды как почти универсального растворителя (рис. 3.6, а).



Hosted by uCoz