Ацюковский В.А. Начала эфиродинамического естествознания. Книга 2. Методология эфиродинамики, свойства эфира и строение вещества. М.:Петит, 2009. — 412 с. — ISBN 978-5-85101-029-3

В начало   Другие форматы   <<<     Страница 270   >>>

  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148  149  150  151  152  153  154  155  156  157  158  159  160  161  162  163  164  165  166  167  168  169  170  171  172  173  174  175  176  177  178  179  180  181  182  183  184  185  186  187  188  189  190  191  192  193  194  195  196  197  198  199  200  201  202  203  204  205  206  207  208  209  210  211  212  213  214  215  216  217  218  219  220  221  222  223  224  225  226  227  228  229  230  231  232  233  234  235  236  237  238  239  240  241  242  243  244  245  246  247  248  249  250  251  252  253  254  255  256  257  258  259  260  261  262  263  264  265  266  267  268  269  270 271  272  273  274  275  276  277  278  279  280  281  282  283  284  285  286  287  288  289  290  291  292  293  294  295  296  297  298  299  300  301  302  303  304  305  306  307  308  309  310  311  312  313  314  315  316  317  318  319  320  321  322  323  324  325  326  327  328  329  330  331  332  333  334  335  336  337  338  339  340  341  342  343  344  345  346  347  348  349  350  351  352  353  354  355  356  357  358  359  360  361  362  363  364  365  366  367  368  369  370  371  372  373  374  375  376  377  378  379  380  381  382  383  384  385  386  387  388  389  390  391  392  393  394  395 
Microsoft Word - 2_001_Титул2.doc

270

Глава 1.

результате такого распада отделяться будут не отдельные нуклоны, входящие в состав альфа-частиц, а целиком альфа-частицы. Это и есть альфа-распад.

Возможно также деление ядер на более крупные части, но это деление преимущественно будет проходить не по телу альфа- частицы, а по их границам, т.е. в обеих частях альфа-частицы сохранятся целиком. Конечно, если кроме альфа-частиц в состав ядра входят еще и отдельные нуклоны, то отделение таких нуклонов тоже вероятно.

Прохождение волн по ядру может привести и к появлению впадин в отдельных нейтронах, что нарушит целостность его тела

и, главное, целостность его пограничного слоя. Будучи разорванным, этот погранслой не будет сохраняться и не обязательно восстановится. Он может оторваться, замкнуться и сколлапсировать- ся в самостоятельную частицу. Поскольку в нем направление винтового движения противоположно тому, что есть в протоне, то образовавшаяся частица будет воспринята как частица с отрицательным зарядом - электрон. Таков возможный вариант механизма Р-распада.

При распаде ядер или преобразовании пограничных слоев нейтрона или межнуклонных пограничных слоев часть эфира перейдет в свободное состояние, это воспринимается как дефект масс и относится сегодня за счет образования нейтрино. Не отрицая возможности образования такой частицы, обладающей массой, близкой к массе электрона, но не имеющей кольцевого вращения или имеющего кольцевое вращение, экранированное уже своим пограничным слоем, следует тем не менее, обратить внимание и на возможность простого растворения избытка пограничного слоя в свободном эфире без образования какой бы то ни было частицы. Это направление до настоящего времени практически не рассматривалось вообще.

В соответствии с излагаемой концепцией в процессе трансформации ядер любых элементов могут образовываться неустойчивые вихревые винтовые структуры самых разнообразных форм

Microsoft Word - 2_001_Титул2.doc

Нуклоны и атомные ядра

271

и масс. Большая часть из них будет не устойчива и продолжит трансформацию - деление (распад), уплотнение, снова деление и просто растворение в эфире до тех пор, пока оставшаяся завихренная масса не придет к нескольким устойчивым формам. Подобные процессы при установлении одинаковых начальных условий будут происходить относительно одинаково, что создаст впечатление стабильности промежуточных форм. Тем не менее, все эти промежуточные формы - осколки устойчивых форм частиц - нуклонов и их пограничных слоев, а вовсе не «элементарные частицы» микромира, из которых якобы состоит вещество. Вещество из них не состоит, а образуются они в результате ударов частиц друг о друга, в результате бомбардировки ядер элементов нейтронами или другими частицами или в результате других подобных операций. Поскольку переходных форм может быть любое множество, то может быть любым и число так называемых «элементарных частиц».

Изложенные представления о распаде сложных вихревых тороидальных систем, каковыми являются ядра атомов, соответствуют модели слабого ядерного взаимодействия.

Современные представления о силах слабого ядерного взаимодействия привели к представлению о стабильности распада радиоактивных ядер. Для большинства неустойчивых изотопов определено время полураспада элементов, т.е. время, в течение которого от исходной массы изотопа должна остаться половина массы, вторая же половина массы превращается в соответствующие изотопы других элементов.

Однако, по мнению некоторых исследователей, время полураспада радиоактивных элементов на самом деле меняется в широких пределах, что ставит под сомнение справедливость некоторых утверждений современной теории слабых ядерных взаимодействий. Так, Г.Лебон в работе [34] отмечает, что если Бекке- рель определил продолжительность существования 1 г радия в 1 млрд. лет, то Кюри - в 1 млн. лет. Резерфорд ограничил существование этого грамма вещества одним тысячелетием, а Крукс -



Hosted by uCoz