Ацюковский В.А. Начала эфиродинамического естествознания. Книга 2. Методология эфиродинамики, свойства эфира и строение вещества. М.:Петит, 2009. — 412 с. — ISBN 978-5-85101-029-3

В начало   Другие форматы   <<<     Страница 191   >>>

  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148  149  150  151  152  153  154  155  156  157  158  159  160  161  162  163  164  165  166  167  168  169  170  171  172  173  174  175  176  177  178  179  180  181  182  183  184  185  186  187  188  189  190  191 192  193  194  195  196  197  198  199  200  201  202  203  204  205  206  207  208  209  210  211  212  213  214  215  216  217  218  219  220  221  222  223  224  225  226  227  228  229  230  231  232  233  234  235  236  237  238  239  240  241  242  243  244  245  246  247  248  249  250  251  252  253  254  255  256  257  258  259  260  261  262  263  264  265  266  267  268  269  270  271  272  273  274  275  276  277  278  279  280  281  282  283  284  285  286  287  288  289  290  291  292  293  294  295  296  297  298  299  300  301  302  303  304  305  306  307  308  309  310  311  312  313  314  315  316  317  318  319  320  321  322  323  324  325  326  327  328  329  330  331  332  333  334  335  336  337  338  339  340  341  342  343  344  345  346  347  348  349  350  351  352  353  354  355  356  357  358  359  360  361  362  363  364  365  366  367  368  369  370  371  372  373  374  375  376  377  378  379  380  381  382  383  384  385  386  387  388  389  390  391  392  393  394  395 
Microsoft Word - 2_001_Титул2.doc

Нуклоны и атомные ядра

191

ве, как предполагалось, 21 частицу - 14 протонов и 7 электронов, каждая из которых имела спин /, в совокупности должен был иметь спин /, а согласно данным по измерению оптических молекулярных спектров спин оказался равным 1.

Состав атомного ядра был выяснен после открытия учеником Резерфорда Дж.Чедвиком (1932) нейтрона [4], масса которого оказалась близкой к массе протона, электрический заряд отсутствовал, а спин оказался равным /. Чедвик установил, что обнаруженное немецкими физиками В.Боте и Г.Бекером проникающее излучение, возникающее при бомбардировке атомных ядер, в частности бериллия, а-частицами, состоит из незаряженных частиц с массой, близкой к массе протона.

Идея о том, что в атомном ядре, кроме протонов, содержатся нейтроны, была впервые высказана в печати Д.Д.Иваненко (1932) [5] и непосредственно вслед за этим развита В.Гейзенбергом [6]. Протоны и нейтроны были объединены общим названием нуклоны. Теории протона и нейтрона, а также атомного ядра, состоящего из протонов и нейтронов, посвящено большое количество работ [7-28].

В дальнейшем теория атомного ядра стала усложняться, при этом было решено, что для выяснения структуры атомных ядер нужно проникать в них частицами-зондами, обладающими большой энергией. Энергия стала измеряться в электрон-Вольтах, и определяться по формуле Эйнштейна E = те2, причем в это определение попадала не только энергия как мера движения самой частицы, но и масса, которая, как считалось, является эквивалентом энергии. Отсюда следовал вывод, что частица, которой предполагалось бомбардировать мишени - атомные ядра различных веществ, должны разгоняться до как можно более высоких скоростей, чтобы благодаря накопленной энергии проникнуть как можно глубже в мишень, произвести там как можно больше разрушений и выделить таким способом те скрытые частицы, которые там содержаться. Изучать эти выделенные частицы можно с помощью детекторов, например, камер Вильсона, заполненных

Microsoft Word - 2_001_Титул2.doc

192

Глава 1.

пересыщенным паром, в которых испущенные частицы будут оставлять свои следы, или с помощью пластин с фотоэмульсиями, на которых эти траектории (треки) будут проявляться. Сами же частицы предварительно пропускаются через систему отклоняющих пластин, создающих электрическое поле и между полюсами магнитов. По трекам частиц и можно будет оценить, какие именно частицы выбиты, какими параметрами они обладают, и какое время жизни имеют.

Именно этой логикой и руководствовались конструкторы ускорителей заряженных частиц [28-31]. Ускорители частиц использовались, в первую очередь, для исследования природы атомных ядер, но в дальнейшем нашли широкое применение во многих областях в химии, биохимии, геофизике и др. Расширяется применение ускорителей в металлургии для выявления дефектов деталей и конструкций (дефектоскопия), в деревообрабатывающей промышленности - для быстрой высококачественной обработки изделий, в пищевой промышленности - для стерилизации инструментов и продуктов, в медицине - для лучевой терапии и для «бескровной хирургии» и в ряде других отраслей.

Толчком к развитию ускорителей заряженных частиц послужили исследования строения атомного ядра, требовавшие потоков заряженных частиц высокой энергии. Применявшиеся вначале естественные источники заряженных частиц - радиоактивные элементы - были ограничены как по интенсивности, так и по энергии испускаемых частиц. С момента осуществления первого искусственного превращения ядер (Э.Резрфорд, 1919) с помощью потока альфа-частиц от радиоактивного источника начались поиски способов получения пучков ускоренных частиц.

Краткая история развития ускорителей изложена в [29]. В 1919-32 гг. использовались ускорители, разгоняющие частицы с помощью высоких напряжений, но затем стали применяться электростатические генераторы (1931) и каскадные генераторы (1932), на которых получали частицы с энергией порядка одного МэВ (миллиона электрон-Вольт). С их помощью в 1932 г. впер¬



Hosted by uCoz