Ацюковский В.А. Начала эфиродинамического естествознания. Книга 2. Методология эфиродинамики, свойства эфира и строение вещества. М.:Петит, 2009. — 412 с. — ISBN 978-5-85101-029-3

В начало   Другие форматы   <<<     Страница 107   >>>

  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107 108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148  149  150  151  152  153  154  155  156  157  158  159  160  161  162  163  164  165  166  167  168  169  170  171  172  173  174  175  176  177  178  179  180  181  182  183  184  185  186  187  188  189  190  191  192  193  194  195  196  197  198  199  200  201  202  203  204  205  206  207  208  209  210  211  212  213  214  215  216  217  218  219  220  221  222  223  224  225  226  227  228  229  230  231  232  233  234  235  236  237  238  239  240  241  242  243  244  245  246  247  248  249  250  251  252  253  254  255  256  257  258  259  260  261  262  263  264  265  266  267  268  269  270  271  272  273  274  275  276  277  278  279  280  281  282  283  284  285  286  287  288  289  290  291  292  293  294  295  296  297  298  299  300  301  302  303  304  305  306  307  308  309  310  311  312  313  314  315  316  317  318  319  320  321  322  323  324  325  326  327  328  329  330  331  332  333  334  335  336  337  338  339  340  341  342  343  344  345  346  347  348  349  350  351  352  353  354  355  356  357  358  359  360  361  362  363  364  365  366  367  368  369  370  371  372  373  374  375  376  377  378  379  380  381  382  383  384  385  386  387  388  389  390  391  392  393  394  395 
Microsoft Word - 2_001_Титул2.doc

Строение газовых вихрей

107

Основываясь на уравнениях Кирхгофа, Гребль в 1877 г. решил несколько задач о плоском движении трех, четырех и 2п вихрей. Задачу о движении четырех вихрей Гребль ограничивает существованием в расположении вихрей плоскости симметрии; движение 2п вихрей ограничивает предположением существования в расположении вихрей п плоскостей ортогональной симметрии.

Два года спустя после работы Гребля появилась работа Коот- са (Bootes), в которой он рассмотрел движение вихревого кольца и показал, что кольцеобразная форма вихря - форма устойчивая. Изучением движения вихревых колец много занимался также Дж.Томсон.

Вихревым движениям в сжимаемой жидкости посвящены работы Гретца и Шре. Движение вихрей, ограниченных стенками, изучал сам Гельмгольц.

Рассматривая движение двух прямолинейных параллельных вихрей в идеально несжимаемой жидкости, Гельмгольц показал, что плоскость, делящая расстояние между двумя вихрями с равными по величине напряженностями, но разными по знаку, может приниматься за стенку, если она перпендикулярна к указанному расстоянию. Вихрь будет двигаться параллельно этой стенке, и эффект стенки сводится, таким образом, к эффекту, происходящему от изображения вихря, если стенку рассматривать, как зеркало.

Гринхилл в 1877-1878 гг. рассмотрел задачи о движении вихрей в жидкости, ограниченной цилиндрическими поверхностями. Пользуясь методом изображений, он решил задачи о плоском движении одного и двух вихрей внутри и вне поверхности круглого цилиндра, а также в пространстве, ограниченном поверхностью прямоугольной четырехугольной призмы.

В 1876-1883 гг. английский физик О.Рейнольдс [8] экспериментально установил критерий перехода ламинарного течения в цилиндрических трубах в турбулентное и ввел критерий, характеризующий критическое соотношение между инерционными силами и силами вязкости, при определенном значении которого

Microsoft Word - 2_001_Титул2.doc

108

Глава 4.

ламинарное течение переходит в турбулентное и далее в вихревое. Это соотношение Re = pvl/ц, названное «числом Рейнольдса», связывает р - плотность жидкости, v - скорость потока, l - характерный линейный размер, п - динамический коэффициент вязкости и позволяет определить условиях образования турбулентностей и вихрей в конкретных случаях течений жидкостей вблизи различных поверхностей и форм.

В это время рядом ученых были решены многочисленные частные задачи вихревого движения. Совершенно особую задачу поставил перед собой в 1894 г. Н.Е.Жуковский, который, пользуясь методом конформного изображения, решил задачу о движении вихря вблизи острия клина, погруженного в жидкость. Рассматривая траектории вихря, он показал, что вихревой шнур всегда уклоняется от подносимого к нему ножа. Впоследствии Жуковский разработал теорию так называемых «присоединенных» вихрей, имеющую фундаментальное значение для многих приложений [9].

В. Томсон, основываясь на теореме о сохранении вихрей, выдвинул особую атомистическую гипотезу [10-11]. Он предположил, что все пространство Вселенной заполнено эфиром - идеальной жидкостью, в которой атомы материи представляют собой бесконечно малые замкнутые вихри, зародившиеся в этой жидкости. Разнообразие в свойствах атомов В.Томсон объяснил многообразием движений, в котором находятся частицы одного простого вещества. Вихревая теория атомов, созданная В.Томсоном, не получила признания и развития. Только в 20-х годах ХХ столетия немецкий гидродинамик А. Корн попытался вновь воскресить идеи В. Томсона, но применительно не к атомам вещества, а к толкованию природы электрона.

Несколько позже Н. П. Кастерин сделал попытку построения вихревой теории элементарных частиц. Однако идеи А.Корна и Н.П.Кастерина были встречены с большим недоверием широкой научной общественностью, вследствие чего они оказались изолированными и невостребованными, хотя в работах этих ученых содержится немалое число интересных соображений.



Hosted by uCoz