![]() | ![]() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 | |
Строение газовых вихрей 107 Основываясь на уравнениях Кирхгофа, Гребль в 1877 г. решил несколько задач о плоском движении трех, четырех и 2п вихрей. Задачу о движении четырех вихрей Гребль ограничивает существованием в расположении вихрей плоскости симметрии; движение 2п вихрей ограничивает предположением существования в расположении вихрей п плоскостей ортогональной симметрии. Два года спустя после работы Гребля появилась работа Коот- са (Bootes), в которой он рассмотрел движение вихревого кольца и показал, что кольцеобразная форма вихря - форма устойчивая. Изучением движения вихревых колец много занимался также Дж.Томсон. Вихревым движениям в сжимаемой жидкости посвящены работы Гретца и Шре. Движение вихрей, ограниченных стенками, изучал сам Гельмгольц. Рассматривая движение двух прямолинейных параллельных вихрей в идеально несжимаемой жидкости, Гельмгольц показал, что плоскость, делящая расстояние между двумя вихрями с равными по величине напряженностями, но разными по знаку, может приниматься за стенку, если она перпендикулярна к указанному расстоянию. Вихрь будет двигаться параллельно этой стенке, и эффект стенки сводится, таким образом, к эффекту, происходящему от изображения вихря, если стенку рассматривать, как зеркало. Гринхилл в 1877-1878 гг. рассмотрел задачи о движении вихрей в жидкости, ограниченной цилиндрическими поверхностями. Пользуясь методом изображений, он решил задачи о плоском движении одного и двух вихрей внутри и вне поверхности круглого цилиндра, а также в пространстве, ограниченном поверхностью прямоугольной четырехугольной призмы. В 1876-1883 гг. английский физик О.Рейнольдс [8] экспериментально установил критерий перехода ламинарного течения в цилиндрических трубах в турбулентное и ввел критерий, характеризующий критическое соотношение между инерционными силами и силами вязкости, при определенном значении которого | 108 Глава 4. ламинарное течение переходит в турбулентное и далее в вихревое. Это соотношение Re = pvl/ц, названное «числом Рейнольдса», связывает р - плотность жидкости, v - скорость потока, l - характерный линейный размер, п - динамический коэффициент вязкости и позволяет определить условиях образования турбулентностей и вихрей в конкретных случаях течений жидкостей вблизи различных поверхностей и форм. В это время рядом ученых были решены многочисленные частные задачи вихревого движения. Совершенно особую задачу поставил перед собой в 1894 г. Н.Е.Жуковский, который, пользуясь методом конформного изображения, решил задачу о движении вихря вблизи острия клина, погруженного в жидкость. Рассматривая траектории вихря, он показал, что вихревой шнур всегда уклоняется от подносимого к нему ножа. Впоследствии Жуковский разработал теорию так называемых «присоединенных» вихрей, имеющую фундаментальное значение для многих приложений [9]. В. Томсон, основываясь на теореме о сохранении вихрей, выдвинул особую атомистическую гипотезу [10-11]. Он предположил, что все пространство Вселенной заполнено эфиром - идеальной жидкостью, в которой атомы материи представляют собой бесконечно малые замкнутые вихри, зародившиеся в этой жидкости. Разнообразие в свойствах атомов В.Томсон объяснил многообразием движений, в котором находятся частицы одного простого вещества. Вихревая теория атомов, созданная В.Томсоном, не получила признания и развития. Только в 20-х годах ХХ столетия немецкий гидродинамик А. Корн попытался вновь воскресить идеи В. Томсона, но применительно не к атомам вещества, а к толкованию природы электрона. Несколько позже Н. П. Кастерин сделал попытку построения вихревой теории элементарных частиц. Однако идеи А.Корна и Н.П.Кастерина были встречены с большим недоверием широкой научной общественностью, вследствие чего они оказались изолированными и невостребованными, хотя в работах этих ученых содержится немалое число интересных соображений. |