Ацюковский В.А. Начала эфиродинамического естествознания. Книга 2. Методология эфиродинамики, свойства эфира и строение вещества. М.:Петит, 2009. — 412 с. — ISBN 978-5-85101-029-3

В начало   Другие форматы   <<<     Страница 253   >>>

  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148  149  150  151  152  153  154  155  156  157  158  159  160  161  162  163  164  165  166  167  168  169  170  171  172  173  174  175  176  177  178  179  180  181  182  183  184  185  186  187  188  189  190  191  192  193  194  195  196  197  198  199  200  201  202  203  204  205  206  207  208  209  210  211  212  213  214  215  216  217  218  219  220  221  222  223  224  225  226  227  228  229  230  231  232  233  234  235  236  237  238  239  240  241  242  243  244  245  246  247  248  249  250  251  252  253 254  255  256  257  258  259  260  261  262  263  264  265  266  267  268  269  270  271  272  273  274  275  276  277  278  279  280  281  282  283  284  285  286  287  288  289  290  291  292  293  294  295  296  297  298  299  300  301  302  303  304  305  306  307  308  309  310  311  312  313  314  315  316  317  318  319  320  321  322  323  324  325  326  327  328  329  330  331  332  333  334  335  336  337  338  339  340  341  342  343  344  345  346  347  348  349  350  351  352  353  354  355  356  357  358  359  360  361  362  363  364  365  366  367  368  369  370  371  372  373  374  375  376  377  378  379  380  381  382  383  384  385  386  387  388  389  390  391  392  393  394  395 
Microsoft Word - 2_001_Титул2.doc

Нуклоны и атомные ядра

253

ность взаимодействия, второго - две, при этом одна сторона ранее установленного нуклона выпуклая, при добавлении третьего - тоже две, при этом одна сторона еще более выпукла, что снижает энергию взаимодействия по сравнению с энергией связей предыдущего нуклона, при добавлении четвертого нуклона - три поверхности, но две из них выпуклые (рис. 1.13).

Рис. 1.13. К объяснению периодичности приращения энергии связей нуклонов при наращивании числа нуклонов в ядре: установка на поверхности ядра одного (а), двух (б), трех (в) и четырех (г) нуклонов.

Из изложенного выше можно сделать следующие выводы.

Присоединение двух нейтронов в изотопах ядер в большинстве случаев не меняет значения спина. Следовательно, эти нейтроны соединяются антипараллельно, но возможно это лишь в присутствии альфа-частиц. То же подтверждает неизменность магнитного момента. Почему так происходит, легко видеть из структуры вихрей: в этом случае основной тороидальный поток этих нейтронов проходит по замкнутому пути, что и обусловливает их антипараллельность, но один или оба нейтрона своими боковыми стенками прислоняются к одной из альфа-частиц также антипараллельно.

Значение спина ядер, у которых он не равен нулю, позволяет судить о числе нуклонов, не входящих в состав альфа-частиц и ориентированных параллельно друг другу. В простейшем случае это число определяется выражением

I I I

к =-

1/2

(161)

Microsoft Word - 2_001_Титул2.doc

254

Глава 1.

здесь 1/2 - спиновое число в единицах h, причем в ядрах с нечетным Z в это число входит один из протонов, остальные протоны входят в состав альфа-частиц, образующих основную массу ядра.

Рассмотрение общей закономерности изменения энергии показывает, что до 28Ni56 общий уровень энергии связей, приходящийся на каждый добавленный нейтрон, растет с увеличением относительной атомной массы.

Например, переход от 28Ni61 к 28Ni62 дает 10,59 МэВ, а переход от 29Си62 к 29Cu63 - уже 10,85 МэВ, т.е. в присутствии дополнительного протона дополнение нейтроном при том же количестве нейтронов дает большее приращение энергии связей.

Объяснение может заключаться в том, что при общем большем числе нуклонов упаковка их получается несколько более плотная, вихри плотнее прижимаются друг к другу, за счет чего площадь соприкосновения нуклонов в пограничных слоях возрастает, и энергия связей взаимодействия нуклонов увеличивается.

Итак, ядра можно рассматривать как:

1)    включающие в свой состав альфа-частицы, число которых определяется ближайшим к атомному номеру числом, делящимся на 4, но не большим, чем ближайшее к Z четное число;

2)    включающие в свой состав параллельно ориентированные нуклоны, число которых равно к;

3)    включающие в свой состав пары нейтронов, ориентированные взаимно антипараллельно, число которых равно разности

n = A - N - к    (1.62)

Так, например, i5P29 с Е = 239,286 МэВ и 171 = 1/2 состоит из семи альфа-частиц (та = 7), для чего необходимы 28 нуклонов и еще 1 протон со спином 1/2. Приращение энергии 15P29 по сравнению с 15P28 составляет 17,87 МэВ, что означает, что в составе 15P28 присутствовало только 6 альфа-частиц. Седьмая альфа-час¬



Hosted by uCoz