![]() | ![]() |
302 дальнейшего углубления в понимание сущности электромагнитных явлений. Прямым следствием этого явилось то, что математические зависимости электродинамики, созданной Максвеллом более ста лет назад, практически никак не развивались. Попытки некоторых исследователей что-либо изменить в этих уравнениях всегда оканчивались неудачей. Это дало основание Л.Больцману в своих примечаниях к переводу работы Максвелла «О физических силовых линиях» в 1898 г. написать [ 16, с.194]: «Я мог бы сказать, что последователи Максвелла в этих уравнениях, пожалуй, ничего кроме букв не переменили. Однако это было бы слишком. Конечно, не тому следует удивляться, что к этим уравнениям вообще что-то могло бы быть добавлено, а гораздо более тому, как мало к ним было добавлено». Сегодня, более ста лет спустя, это удивление Больцмана сохраняет свою силу: к уравнениям Максвелла практически не добавлено ничего, хотя за это время написаны сотни учебников по теоретическим основам электротехники, электродинамики и радиотехнике, решены тысячи прикладных задач, созданы разнообразнейшие устройства. Казалось бы, что нет никаких оснований возвращаться к этому вопросу. Однако это не так. Во-первых, идеализированные представления о движениях эфирной жидкости привели к парадоксам в моделях электромагнетизма, подобным тем, которые имеют место в гидродинамике идеальной жидкости, например энергия единицы длины вихря равна бесконечности независимо от его интенсивности. В электродинамике возник парадокс, аналогичный рассмотренному: энергия единицы длины проводника с током равна бесконечности независимо от величины тока. Правда, поскольку одиночного проводника в природе не существует, появляется возможность разрешения этого парадокса за счет рассмотрения всей конструкции в целом, включая обратный проводник, тогда этот парадокс разрешается. Тем не менее, парадоксального положения не должно существовать ни для какой системы, в том числе и для условного одиночного проводника. Имеются и некоторые другие недостатки существующих моделей: большинство из них не рассматривает взаимодействия вещества и электромагнитных полей, отрывая их тем самым друг от друга, в некоторых выражениях никак не отражено взаимодействие источников полей и тел, на которые они воздействуют, и т.п. Во-вторых, выяснилось, что многие расчеты, построенные на основе уравнений Максвелла, дают весьма приближенные результаты, отличающиеся от найденных эмпирическим путем, на десятки |
303 процентов, иногда и в несколько раз. Это касается, например, взаимоиндукции больших контуров. Правда, прикладники к этому привыкли, относят неувязки к неучету сопутствующих факторов и в процессе отладки устройств вносят необходимые коррективы. Но анализ показывает, что одними неучтенными факторами отклонения в расчетах объяснить нельзя. В-третьих, обнаружилось, что существует серия задач электродинамики, которые не могут быть решены на основе существующих представлений. Это связано, в первую очередь, с тем, что авторами моделей рассматривались лишь первые приближения к электромагнитным явлениям, а таких приближений по мере накопления новых данных может быть сколько угодно, привели к тому, что некоторые прикладные задачи электродинамики оказываются нерешенными, причем имеются задачи, которые принципиально нельзя решить на базе уравнений Максвелла. К таким задачам, например, относится совместное движение двух одинаковых зарядов, неподвижных относительно друг друга: пока они оба неподвижны, они отталкиваются друг от друга по закону Кулона, но если они вместе, не смещаясь один относительно другого, перемещаются в пространстве, то они теперь становятся токами, притягивающимися друг к другу. Почему? Такой задачей, например, является и задача о распространении электромагнитных волн диполем Герца, помещенным в полупроводящую среду. Диполь Герца, т. е. диполь с сосредоточенными параметрами, которые известны, помещенный в полупроводящую среду, параметры которой тоже известны, излучает ток известной величины, частота которого тоже известна. Нужно определить плотность тока в среде в заданной точке пространства. Эта задача полностью физически определена. Несмотря на тривиальность постановки и заманчивую возможность из общего решения этой задачи получить как предельный случай многие частные результаты – излучение в идеальной среде при отсутствии активной проводимости, затухание плоской волны в полупроводнике при бесконечных расстояниях от диполя и некоторые другие, – задача об излучении диполя Герца в полупроводящей среде никогда и никем не была решена, и попытки ее решить неизменно кончались неудачей. Имеются, правда, попытки сформировать готовое решение путем перемножения двух частных решений – решения задачи о распространении поля диполем Герца в идеальной среде и решения задачи плоской волны, но такой подход совершенно некорректен. На самом деле эта задача не |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 |