Ацюковский В.А. Общая эфиродинамика. Моделирование структур вещества и полей на основе представлений о газоподобном эфире. — Издание второе. — М.:Энергоатомиздат, 2003, — 584 с. — ISBN 5-283-03229-9

В начало   <<<     Страница 302   >>>

302

дальнейшего углубления в понимание сущности электромагнитных явлений. Прямым следствием этого явилось то, что математические зависимости электродинамики, созданной Максвеллом более ста лет назад, практически никак не развивались.

Попытки некоторых исследователей что-либо изменить в этих уравнениях всегда оканчивались неудачей. Это дало основание Л.Больцману в своих примечаниях к переводу работы Максвелла «О физических силовых линиях» в 1898 г. написать [ 16, с.194]:

«Я мог бы сказать, что последователи Максвелла в этих уравнениях, пожалуй, ничего кроме букв не переменили. Однако это было бы слишком. Конечно, не тому следует удивляться, что к этим уравнениям вообще что-то могло бы быть добавлено, а гораздо более тому, как мало к ним было добавлено».

Сегодня, более ста лет спустя, это удивление Больцмана сохраняет свою силу: к уравнениям Максвелла практически не добавлено ничего, хотя за это время написаны сотни учебников по теоретическим основам электротехники, электродинамики и радиотехнике, решены тысячи прикладных задач, созданы разнообразнейшие устройства. Казалось бы, что нет никаких оснований возвращаться к этому вопросу. Однако это не так.

Во-первых, идеализированные представления о движениях эфирной жидкости привели к парадоксам в моделях электромагнетизма, подобным тем, которые имеют место в гидродинамике идеальной жидкости, например энергия единицы длины вихря равна бесконечности независимо от его интенсивности. В электродинамике возник парадокс, аналогичный рассмотренному: энергия единицы длины проводника с током равна бесконечности независимо от величины тока. Правда, поскольку одиночного проводника в природе не существует, появляется возможность разрешения этого парадокса за счет рассмотрения всей конструкции в целом, включая обратный проводник, тогда этот парадокс разрешается. Тем не менее, парадоксального положения не должно существовать ни для какой системы, в том числе и для условного одиночного проводника.

Имеются и некоторые другие недостатки существующих моделей: большинство из них не рассматривает взаимодействия вещества и электромагнитных полей, отрывая их тем самым друг от друга, в некоторых выражениях никак не отражено взаимодействие источников полей и тел, на которые они воздействуют, и т.п.

Во-вторых, выяснилось, что многие расчеты, построенные на основе уравнений Максвелла, дают весьма приближенные результаты, отличающиеся от найденных эмпирическим путем, на десятки

303

процентов, иногда и в несколько раз. Это касается, например, взаимоиндукции больших контуров. Правда, прикладники к этому привыкли, относят неувязки к неучету сопутствующих факторов и в процессе отладки устройств вносят необходимые коррективы. Но анализ показывает, что одними неучтенными факторами отклонения в расчетах объяснить нельзя.

В-третьих, обнаружилось, что существует серия задач электродинамики, которые не могут быть решены на основе существующих представлений. Это связано, в первую очередь, с тем, что авторами моделей рассматривались лишь первые приближения к электромагнитным явлениям, а таких приближений по мере накопления новых данных может быть сколько угодно, привели к тому, что некоторые прикладные задачи электродинамики оказываются нерешенными, причем имеются задачи, которые принципиально нельзя решить на базе уравнений Максвелла.

К таким задачам, например, относится совместное движение двух одинаковых зарядов, неподвижных относительно друг друга: пока они оба неподвижны, они отталкиваются друг от друга по закону Кулона, но если они вместе, не смещаясь один относительно другого, перемещаются в пространстве, то они теперь становятся токами, притягивающимися друг к другу. Почему?

Такой задачей, например, является и задача о распространении электромагнитных волн диполем Герца, помещенным в полупроводящую среду. Диполь Герца, т. е. диполь с сосредоточенными параметрами, которые известны, помещенный в полупроводящую среду, параметры которой тоже известны, излучает ток известной величины, частота которого тоже известна. Нужно определить плотность тока в среде в заданной точке пространства. Эта задача полностью физически определена. Несмотря на тривиальность постановки и заманчивую возможность из общего решения этой задачи получить как предельный случай многие частные результаты – излучение в идеальной среде при отсутствии активной проводимости, затухание плоской волны в полупроводнике при бесконечных расстояниях от диполя и некоторые другие, – задача об излучении диполя Герца в полупроводящей среде никогда и никем не была решена, и попытки ее решить неизменно кончались неудачей. Имеются, правда, попытки сформировать готовое решение путем перемножения двух частных решений – решения задачи о распространении поля диполем Герца в идеальной среде и решения задачи плоской волны, но такой подход совершенно некорректен. На самом деле эта задача не

   1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148  149  150  151  152  153  154  155  156  157  158  159  160  161  162  163  164  165  166  167  168  169  170  171  172  173  174  175  176  177  178  179  180  181  182  183  184  185  186  187  188  189  190  191  192  193  194  195  196  197  198  199  200  201  202  203  204  205  206  207  208  209  210  211  212  213  214  215  216  217  218  219  220  221  222  223  224  225  226  227  228  229  230  231  232  233  234  235  236  237  238  239  240  241  242  243  244  245  246  247  248  249  250  251  252  253  254  255  256  257  258  259  260  261  262  263  264  265  266  267  268  269  270  271  272  273  274  275  276  277  278  279  280  281  282  283  284  285  286  287  288  289  290  291  292  293  294  295  296  297  298  299  300  301  302  303  304  305  306  307  308  309  310  311  312  313  314  315  316  317  318  319  320  321  322  323  324  325  326  327  328  329  330  331  332  333  334  335  336  337  338  339  340  341  342  343  344  345  346  347  348  349  350  351  352  353  354  355  356  357  358  359  360  361  362  363  364  365  366  367  368  369  370  371  372  373  374  375  376  377  378  379  380  381  382  383  384  385  386  387  388  389  390  391  392  393  394  395  396  397  398  399  400  401  402  403  404  405  406  407  408  409  410  411  412  413  414  415  416  417  418  419  420  421  422  423  424  425  426  427  428  429  430  431  432  433  434  435  436  437  438  439  440  441  442  443  444  445  446  447  448  449  450  451  452  453  454  455  456  457  458  459  460  461  462  463  464  465  466  467  468  469  470  471  472  473  474  475  476  477  478  479  480  481  482  483  484  485  486  487  488  489  490  491  492  493  494  495  496  497  498  499  500  501  502  503  504  505  506  507  508  509  510  511  512  513  514  515  516  517  518  519  520  521  522  523  524  525  526  527  528  529  530  531  532  533  534  535  536  537  538  539  540  541  542  543  544  545  546  547  548  549  550  551  552  553  554  555  556  557  558  559  560  561  562  563  564  565  566  567  568  569  570  571  572  573  574  575  576  577  578  579  580  581  582  583  584 


Hosted by uCoz