![]() | ![]() |
278 взаимодействия различна: в твердом теле она максимальна, в жидкости средняя, а в газе минимальна. Межмолекулярное взаимодействие – это взаимодействие между электрически нейтральными молекулами или атомами, определяющее существование жидкостей и молекулярных кристаллов, отличие реальных газов от идеальных и проявляется в разнообразных физических явлениях. Межмолекулярное взаимодействие зависит от расстояния между молекулами и описывается потенциальной энергией взаимодействия U(r) (потенциалом межмолекулярного взаимодействия). Именно средняя потенциальная энергия взаимодействия определяет состояние и многие свойства вещества. Впервые межмолекулярное взаимодействие принял во внимание в 1873 г. голландский физик Я.Д. Ван-дер-Ваальс для объяснения свойств реальных газов и жидкостей [69–71]. Он предположил, что на малых расстояниях между молекулами действуют силы отталкивания, которые с увеличением расстояния сменяются силами притяжения. На этой основе он получил уравнение состояния реального газа. В настоящее время принято считать, что межмолекулярное взаимодействие имеет электрическую природу и складывается из сил притяжения (ориентационных, индукционных и дисперсионных) и сил отталкивания. Ориентационные силы действуют между полярными молекулами, т.е. обладающими дипольными электрическими моментами. Эти силы возникают вследствие того, что расстояния между разноименными зарядами много меньше, чем между одноименными. Индукционные силы действуют между полярной и неполярной молекулами за счет того, что полярная молекула поляризует неполярную. Дисперсионные силы действуют между неполярными молекулами и возникают за счет того, что, хотя в среднем молекулы не полярны, в каждое мгновение они все же полярны. Что в среднем и создает соответствующий эффект притяжения. Все три типа сил притяжения убывают с расстоянием пропорционально 6-й степени расстояния между молекулами. Силы отталкивания возникают на очень малых расстояниях, когда приходят в соприкосновение заполненные электронные оболочки атомов, входящих в состав молекул. Эти силы убывают с расстоянием пропорционально 13-й степени расстояния. Однако все это является некоторой моделью, в основном математической зависимостью сил межмолекулярного взаимодействия от расстояния, практически не проливающей свет на истинную природу этих сил. Отсюда и трудности с расчетом этих сил и с экспериментальными измерениями межмолекулярных сил. |
279 На основе изложенных выше эфиродинамических представлений могут быть высказаны предположения о природе сил Ван-дер-Ваальса, т. е. сил, ответственных за межмолекулярные взаимодействия. С точки зрения эфиродинамики силы межмолекулярного взаимодействия обусловлены тем, что к электронным оболочкам – первым присоединенным к ядрам эфирным вихрям – присоединены вторые присоединенные вихри, которые справедливо будет назвать оболочками Ван-дер-Ваальса, поскольку именно они ответственны за создание сил межмолекулярного взаимодействия (рис. 7.13). Так же как винтовое поле скоростей эфира, создаваемое протоном, приводит к появлению присоединенного вихря – электронной оболочки, точно так же и винтовые потоки эфира на поверхности электронной оболочки вызывают винтовые движения эфира в окружающем пространстве. В результате образуется второй присоединенный вихрь, размер которого на 4–5 порядков больше размера электронной оболочки. Если нуклоны, имея критическую плотность, не могут проникать друг в друга, а только соединяются в ядре, примыкая друг к другу боковыми поверхностями, то уже эфирные вихри электронных оболочек способны взаимодействовать путем объединения, однако, не проникая друг в друга. Вторые же присоединенные вихри имеют малую плотность и способны проникать друг в друга. В результате в окрестностях электронных оболочек образуются разнообразные винтовые потоки, попав в которые атомы и молекулы удерживаются в них благодаря градиентам скоростей. Таким образом, природа межмолекулярных сил – сил Ван-дер-Ваальса – заключается в снижении давления в эфире благодаря градиентам скоростей потоков во вторых присоединенных вихрях – ван-дер- ваальсовой оболочке. Если диаметр атомного ядра равен примерно 5·10–15 м, а диаметр электронной оболочки составляет около 10–10 м, то диаметр оболочки Ван-дер-Ваальса должен составлять порядка 10–5 м или около 10 мкм. Внутри такой оболочки каждого атома может поместиться порядка 1015 других атомов. Следовательно, все оболочки ван-дер-Ваальса будут многократно перемешаны друг с другом и составят единую систему. Рассмотрим распределение скоростей потоков эфира и распределение плотности эфира в этих потоках для одной оболочки Ван-дер-Ваальса. Следует учесть, что приводным ремнем для этой оболочки являются потоки эфира поверхности первого присоединенного вихря – электронной оболочки атома. |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 |