1 2 3 4 5 6 7 8 9 10  
others the springing of the tin lantern by heating) the fringes would suddenly change their position, in which case the series of observations was rejected and a new series begun. In making the adjustment before the third series of observations, the direction in which the fringes moved, on moving the glass plate 5, was reversed, so that the displacement m the third and fourth series are to be taken with the opposite sign. At the end of each series the support was turned 90°, and the axis was carefully adjusted to the vertical by means of the footscrews and a spirit level.
 The heading of the columns in the table gives the direction toward which the telescope pointed. The footing of the erroneous column is marked x_{)} and in the calculations the mean of the two adjacent footings is substituted. The numbers in the columns are the positions of the center of the dark fringe in twelfths of the distance between the fringes. In the first two series, when the footings of the columns N. and S. exceed those of columns.E. and W., the excess is called positive. The excess of the footings of N.E., S.W., over tbose of N.W., S.E., are also called positive. In the third and fourth series this is reversed. The numbers marked “ excess” are the sums of ten observations. Dividing therefore by I0_{f} to obtain the mean, and also by 12 (since the numbers are twelfths of the distance between the frinees\ we find for
The displacement is, therefore, In favor of the columns 1T.S_________________+ 0'022 “ “ “ N.B., S.'W............+0034 The former is too small to be consideredas showing a displacement due to the simple change in direction, and the latter should have been zero. The numbers are simply outstanding errors of experiment. It is, in fact, to be seen from the footings of the columns, that the numbers increase (or decrease) with more or less regularity from left to right. This gradual change, which should not in the least affect the periodic variation for which we are searching, would of itself necessitate an outstanding error, simply because the sum of the two columns farther to the left must be less (or greater) than the sum of those farther to the right. This view is amply confirmed by the fact that where the excess is positive for the column N.S., it is also positive for N.E., S.W._{7} and where negative, negative. If, therefore, we can eliminate this gradual change, we may expect a much smaller error. This is most readily accomplished as follows: Adding together all the footings of the four series, the third and fourth with negative sign, we obtain
