1 2 3 4 5 6 7 8 9 10 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
and at this time of the year the tangent of the earth’s motion in its orbit makes an angle ofwith the plane of the equator; hence we may say the resultant would lie within 25° of the. equator. The nearer the two components are in magnitude to each other, the more nearly would their resultant coincide with the plane of the equator. In this case, if the apparatus be so placed that the arms point north and east at noon, the arm pointing east would coincide with the resultant motion, and the other would be at right angles. Therefore, if at this time the apparatus be rotated 90°, the displacement of the fringes should be twice or 0*16 of the distance between the fringes. If, on the other hand, th-e proper motion of the sun is small compared to the earth’s motion, the displacement should be of *08 or OO^S. Taking the mean of these two numbers as the most probable, we may say tha£J:the displacement to be looked for is not far from one-tenth the distance between the fringes. The principal difficulty which was to be feared in making these experiments, was that arising from changes of temperature of the two arms of the instrument. These being of brass whose coefficient of expansion is 0*000019 and having a length of about 1000 mm. or 1 '700 000 wave-lengths, if one arm should have a temperature only one one-hundredth of a degree higher than the other, the fringes would thereby experience a displacement three times as great as that which would result from the rotation. On the other hand, since the changes of temperature are independent of the direction of the arms, if these changes were not too great their effect could be eliminated. It was found, however, that the displacement on account of bending of the arms during rotation was so considerable that the instrument had to be returned to the maker with instructions to make it revolve as easily as possible. It will be seen from the tables, that notwithstanding this precaution a large displacement was observed in one particular direction. That this was due entirely to the support was proved by turning the latter through 90°, when the direction in which the displacement appeared was also changed 90°. On account of the sensitiveness of the instrument to vibration, the micrometer screw of the observing telescope could not be employed, and a scale ruled on glass was substituted. The distance between the fringes covered three scale divisions, and the position of the center of the dark fringe was estimated to fourths of a division, so that the separate estimates were correct to within T'-%. It frequently occurred that from some slight cause (among | others the springing of the tin lantern by heating) the fringes would suddenly change their position, in which case the series of observations was rejected and a new series begun. In making the adjustment before the third series of observations, the direction in which the fringes moved, on moving the glass plate 5, was reversed, so that the displacement m the third and fourth series are to be taken with the opposite sign. At the end of each series the support was turned 90°, and the axis was carefully adjusted to the vertical by means of the foot-screws and a spirit level.
|