Ацюковский В.А. Общая эфиродинамика. — М.:Энергоатомиздат, 2003

В начало   Другие форматы (PDF, DjVu)   <<<     Страница 383   >>>

  

_383

Приведенные выражения представляют собой модифицированные Второе и Первое уравнения Максвелла, отличающиеся от последних тем, что обычно используемый в уравнениях Максвелла «сторонний ток» выражен через напряженности, а также с учетом источников электрического и магнитного полей, внешних относительно рассматриваемого объема. Представленные в такой форме уравнения электромагнитного поля позволяют сделать некоторые отличные от обычных выводы.

Действительно, в общем случае напряженности магнитного и электрического полей, используемые в обоих уравнениях, разные, а не одинаковые, как это имеет место в уравнениях Максвелла. Напряженность магнитного поля Нт стоящая в левой части первого уравнения (модернизированного Первого уравнения Максвелла), является частью всей электрической напряженности правой части второго уравнения (модернизированного Второго уравнения Максвелла); напряженность электрического поля Еч, стоящая в левой части Второго уравнения, является частью всей магнитной напряженности правой части Первого уравнения.

Чтобы показать, что полученный результат не столь тривиален, как это может показаться с первого взгляда, рассмотрим частный случай, при котором 8е Ф 0, в то время как Н- = 0, т.е. ток течет и меняется во времени, а магнитное поле отсутствует.

В самом деле, если электрическое поле направлено вдоль оси z, а в плоскости ху распределено равномерно, то тогда

дЕщ dEw

=0; = 0

ду дх

и следовательно

dF dF

rot Evz =-----= 0, откуда

ду дх

Hy+HEv 1 = 0,

т.е. происходит полная компенсация магнитного поля. Фактически все второе уравнение обращатся в нуль, а первое уравнение остается в прежнем виде.

384

Аналогично, если магнитное поле направлено вдоль оси z, а в плоскости ху распределено равномерно, то тогда

дНщ дНуу

=0; = 0

ду дх

то

дНщ dHw

rot Hxfz =-----= 0, откуда

ду дх

Еч + EHv 1 = 0,

т.е. происходит полная компенсация электрическогоо поля. Тогда первое уравнение обращатся в нуль, а второе уравнение остается в прежнем виде.

В каждой точке пространства произошла полная компенсация полей, внутреннего и внешнего по отношению к любому рассматриваемому объему, хотя и складывается на первый взгляд парадоксальная ситуация: при наличии переменного во времени электрического тока магнитное поле полностью отсутствует. На самом деле это поле полностью скомпенсировано в каждой точке пространства, и если какой-то объем проводника извлечь, то по границам этого вынутого объема и в самом объеме немедленно появится соответствующее магнитное поле. Это хорошо видно на рис. 8.19.

Экспериментальная проверка высказанных положений подтвердила их. В эксперименте была использована плоскость, на которой был размещен ряд проволочных контуров, включенных последовательно, через которые пропускался переменный ток. Контура создавали переменное магнитное поле в окружающем их пространстве. Над контурами размещалась измерительная рамка, к которой был подключен измерительный прибор. Переключение контуров осуществлялось таким образом, что поочередно мог подключаться соответствующий контур проволочных контуров (рис. 8.24).

Эксперимент показал, что по мере подключения внутренних по отношению к измерительной рамке контуров ЭДС на ней растет, а по мере последующего подключения внешних по отношению к рамке контуров ЭДС начинает уменьшаться. Это оказалось справедливым для