Ацюковский В.А. Общая эфиродинамика. — М.:Энергоатомиздат, 2003

В начало   Другие форматы (PDF, DjVu)   <<<     Страница 154   >>>

  

154

Глава 5. Строение газовых вихрей.

Здесь / - средняя длина, a S- площадь поперечного сечения общего для двух петель потока газа.

Стремление системы к минимуму энергии создает силы, направленные на расширение площади петель и сближение пересекающихся частей петель. Поскольку в пересекающихся частях петель направление вращения одинаково, эти части сольются, но тут же петли сформируются в самостоятельные вихревые кольца, которые отделятся друг от друга. Получившиеся кольца подвергнутся дальнейшему делению. Такое деление будет продолжаться до тех пор, пока диаметр тела тороида не станет соизмерим с радиусом собственно тороида. В результате форма тела тороида приблизится к шаровой (вихрь Хилла), при этом стенки тороида будут уплотненными.

Рассмотренный механизм образования и деления вихревых колец не является единственным. Деление вихревых колец после их образования легко видеть на простом опыте, если в банку со спокойной водой с высоты 2-3 см капнуть каплю чернил. На рис. 5.12 видно, как первоначально образованное в результате попадания капли чернил в воду тороидальное кольцо начинает распадаться на более мелкие тороидальные кольца, которые в свой очередь делятся на еще более мелкие и т.д.

Рис. 5.12. Образование и деление тороидальных вихревых колец в жидкости при падении капли

Таким образом, хаотическое смещение потоков жидкости также способно породить делящиеся тороидальные кольца.

155

Винтовой вихревой тороид газа представляет собой образование типа свернутой трубы, в полости которой давление и плотность газа ниже, чем в свободной среде, но в стенках газ существенно уплотнен. Стенки трубы вблизи центральной оси обеспечивают в этом месте наиболее высокую плотность газа (исключая собственно осевое центральное отверстие), эта область может быть названа керном (ядром) винтового тороидального вихря.

Как показали эксперименты с обычным дымовым тороидом, такая труба имеет эллипсоидальную форму, в результате чего диаметр тороида D меньше двух, но более одного диаметра тора d и составляет примерно 1,7d, диаметр внутреннего отверстия тора 5 равен примерно 0,25d, а отношение осевых размеров эллипса равно примерно 0,7:1 (данные заимствованы из работы [30] и относятся к структуре воздушных дымовых тороидов) (рис. 5.13, 5.14). Для эфирных винтовых вихревых тороидов соотношения размеров и формы будут, вероятно, несколько иными, но вряд ли это существенно.

Рис. 5.13. Тороидальный газовый вихрь в разрезе

В вихревом газовом тороиде, структура которого близка к замкнутой трубе с уплотненными стенками, отчетливо выделяются керн -центральная часть, имеющая осевое отверстие, оболочка, образованная внешними стенками той же трубы, и пограничный поверхностный слой, удерживающий газ в уплотненном виде в стенках. Линии тока газа в тороидальном движении в стенках трубы проходят во внутренней части тороида через площадь, существенно меньшую, чем снаружи. Поэтому скорость тороидального движения газа в центральной части тороида значительно больше, чем в наружных стенках. Однако полная скорость потока не может измениться, так как энергию движения потока плотного газа отдать некуда, поэтому линия тока газа меняет направление: к тороидальному направлению добавляется кольцевое. По