Ацюковский В.А. Общая эфиродинамика. — М.:Энергоатомиздат, 2003

В начало   Другие форматы (PDF, DjVu)   <<<     Страница 127   >>>

  

127

Глава 5. Строение газовых вихрей

Материя, как существующая независимо от нашего сознания объективная реальность, имеет широкое разнообразие форм.

Т.Эрдеи-Груз [1]

5.1. Краткая история теории вихревого движения

Краткая история теории вихревого движения изложена в [2].

Начало современной теории вихревых движений положил Г.Гельмгольц, опубликовавший в 1858 г. свой мемуар «Об интеграле гидродинамических уравнений, соответствующих вихревому движению» [3, 4], в котором он впервые сформулировал теорему о сохранении вихрей. Согласно этой теореме, при силах, удовлетворяющих закону сохранения энергии, невозможно создать или уничтожить уже существующий вихрь и, более того, невозможно даже изменить напряжение последнего. Зарождение и угасание вихрей, наблюдаемые в природе, целиком определяются пассивными силами трения. Только блогодаря этим силам осуществляется вихрь, и они же заставляют зародившийся вихрь потухать.

Интегралы гидродинамических уравнений, из которых как следствие вытекает теорема о сохранении вихрей, были получены еще в 1815 г. Коши. Но Коши интересовала лишь аналитическая сторона дела. Г еометрическая же интерпретация его результатов принадлежит Гельмгольцу. Только после этого возникла та группа вопросов и задач, которые теперь составляют предмет учения о вихрях.

Однако нельзя не упомянуть, что частные случаи теоремы о сохранении вихрей были уже известны Лагранжу. В своей «Аналитической механике», опубликованной в 1788 г. [5], он доказывает, что движение идеальной жидкости, обладая потенциалом скоростей в какой-либо момент времени, остается таковым за все время движения. Далее Коши и Стокс доказывали, что всякая частица идеальной жидкости никогда не получает вращения от окружающей среды, если не обладала им в начальный момент времени.

В 1839 г. шведский ученый Свенберг доказал следующую теорему: угловые скорости вращения частиц в различных положениях ее на траектории всегда обратно пропорциональны квадратам расстояния ее от траектории движения. Отсюда заключение: частица жидкости, получив в какой-либо момент угловую скорость, никогда не перестанет

128

Глава 5. Строение газовых вихрей.

вращаться и, наоборот, частица жидкости не будет вращаться, если в начале движения ее угловая скорость была равна нулю.

В указанном выше мемуаре Гельмгольца принцип сохранения вихрей был обоснован во всей полноте. Более того, там же указано правило определения скоростей движения вихревых шнуров, находящихся в идеальной несжимаемой жидкости, и тех частей жидкой массы, где отсутствуют вихри. Им же указана аналогия между скоростями движения частиц жидкости и силами действия гальванических токов на магнитный полюс.

Все последующие работы, появившиеся после 1853 г., по существу являются расширением и обобщением основных результатов, добытых Гельмгольцем.

Итальянский ученый Бельтрами, пользуясь теоремами, выведенными Гельмгольцем, дал правило определения скоростей частиц сжимаемой жидкости, находящейся в вихревом движении и замкнутой конечным объемом. Это правило, устанавливающее электродинамические аналогии, известно как теорема Бельтрами [6].

Крупный шаг вперед после Гельмгольца сделал Кирхгоф. В своих «Лекциях по математической физике» [7] он дал дифференциальные уравнения движения прямолинейных и параллельных вихревых шнуров, находящихся в неограниченной массе несжимаемой жидкости. Он же указал четыре интеграла этих уравнений.

Основываясь на уравнениях Кирхгофа, Гребль в 1877 г. решил несколько задач о плоском движении трех, четырех и 2п вихрей. Задачу о движении четырех вихрей Гребль ограничивает существованием в расположении вихрей плоскости симметрии; движение 2п вихрей ограничивает предположением существования в расположении вихрей п плоскостей ортогональной симметрии.

Два года спустя после работы Гребля появилась работа Коотса (Cootes), в которой он рассмотрел движение вихревого кольца и показал, что кольцеобразная форма вихря - форма устойчивая. Изучением движения вихревых колец много занимался также Дж. Томсон.

Вихревым движениям в сжимаемой жидкости посвящены работы Гретца и Шре. Движение вихрей, ограниченных стенками, изучал сам Г ельмгольц.

Рассматривая движение двух прямолинейных параллельных вихрей в идеально несжимаемой жидкости, Г ельмгольц показал, что плоскость, делящая расстояние между двумя вихрями с равными по величине напряженностями, но разными по знаку, может приниматься за стенку, если она перпендикулярна к указанному расстоянию. Вихрь будет