Ацюковский В.А. Общая эфиродинамика. — М.:Энергоатомиздат, 2003

В начало   Другие форматы (PDF, DjVu)   <<<     Страница 406   >>>

  

406

Для проверки факта распространения электрического поля и соответственно электрического тока вдоль направления своих векторов были проведены два эксперимента. В первом эксперименте использовался резиновый шланг, наполненный подсоленой водой и подвешенный на нитях посреди комнаты. В шланг помещались два диполя с сосредоточенными параметрами - излучающий, соединенный через коаксиальный кабель с генератором синусоидальных колебаний Г, и приемный, соединенный через коаксиальный кабель с приемником П - диодным мостом с микроамперметром (рис. 8.34). Шланг с водой имеет паразитную емкость Спар со стенками помещения.

Включение электродов через коаксиальные кабели исключило возможность появления каких-либо паразитных контуров.

Рис. 8.34. Схема эксперимента по проверке продольного распространения излучения диполя с сосредоточенными параметрами:

1 - резиновый шланг, наполненный подсоленной водой; 2 - электроды излучающего диполя; 3 - электроды приемного диполя

При изменении расстояния d между диполями в связи с не разветвленностью тока сигнал в приемнике не должен меняться, по крайней мере, до тех пор, пока сопротивление канала не окажется соизмеримым с сопротивлением паразитных емкостей. Это происходит на некотором расстоянии d, так как сопротивление воды в канале и проводимость паразитной емкости Спар пропорциональны отношению d/Ь. На рис. 8.35 приведены полученные зависимости. Результат полностью подтвердил ожидания. При этом выяснилось, что увеличение солености воды, т. е. увеличение ее проводимости увеличивает полезный сигнал и увеличивает зону постоянной амплитуды выходного сигнала. В дальнейшем следует проверить факт роста затухания продольной волны при различных значения активной проводимости

407

среды. Следует иметь в виду, что затухание в полупроводящей среде продольной волны может быть также следствием того, что энергия каждой полуволны фактически самостоятельна, поэтому причина затухания продольной волны в полупроводящей среде может та же, что и у поперечных волн.

Во втором эксперименте использовался диполь с плоскими электродами с фиксацией напряженности и электрической энергии вторым диполем. Эксперимент ставился в тонком плоском слое полупроводящей среды.

Рис. 8.35. Зависимость сигнала приемника от расстояния между диполями при продольном излучении энергии

На рис. 8.36 показана диаграмма распространения электрического поля. Как видно из диаграммы, основная напряженность электрического поля получена вдоль оси диполя, а не поперек его, как это следует из уравнений Максвелла. Наиболее вытянутой диаграмма окажется в том случае, если расстояние между электродами излучателя составит половину волны в полупроводящей среде.

Рис. 8.36. Распространение электрического поля диполем с сосредоточенными параметрами в тонком слое полупроводящей среды.

Продольная составляющая больше поперечной составляющей поля

Таким образом, факт существования продольного распространения электрического поля в дальней зоне, превышающей зону индукции,