Ацюковский В.А. Общая эфиродинамика. — М.:Энергоатомиздат, 2003

В начало   Другие форматы (PDF, DjVu)   <<<     Страница 206   >>>

  

206

6.4. Образование и структура нейтрона

С учетом изложенного может быть рассмотрен механизм образования нейтрона в ядре (рис. 6.8).

Рис. 6.8. Взаимодействие протонов и механизм образования нейтрона

Если скорости сближения протонов в газе таковы, что способны преодолеть силы электрического отталкивания, то два протона развернутся антипараллельно, поскольку при этом на их периферии образуется чрезвычайно высокий градиент кольцевых скоростей. Устойчивость тороидального течения на поверхности протона будет исключительно высокой, поскольку тороидальное течение эфир создается не столько поверхностью, сколько внутренним отверстием протона, где сцепление потока эфира с телом протона высокая из-за высокой плотности и высокой температуры продуваемого эфира. Устойчивость кольцевого потока не высока, поскольку кольцевое течение на поверхности протона создается только его поверхностью за счет вязкости в слоях эфира. При этом температура эфира здесь низкая, градиент скорости относительно высок, следовательно, и вязкость невелика.

Если два протона соприкасаются друг с другом в пределах пограничного слоя, то тороидальные потоки будут слабо воздействовать друг на друга. Кольцевой же поток одного протона в пределах этого пограничного слоя окажется в конкурентной ситуации по отношению к кольцевому потоку второго протона. Ситуация окажется неустойчивой, один из потоков будет тормозиться. Это приведет к тому, что градиент скорости кольцевого движения у тормозящегося потока начнет возрастать, а вязкость падать. В результате все кольцевое движение

207

окажется замкнутым внутри этого пограничного слоя. Протон превратится в нейтрон.

То, что нейтроны могут образовываться только внутри ядра, подтверждается тем, что в свободном состоянии нейтроны не могут существовать сколько-нибудь долго: они самопроизвольно

превращаются в протон. Считается, что при этом образуется и электрон, но на самом деле это вовсе не обязательно, так как вероятнее всего просто пограничный слой нейтрона преобразуется в пограничный слой протона безо всякого рождения электрона. Это происходит потому, что в освободившемся из атомного ядра нейтроне ничто более не препятствует восстановлению его обычного кольцевого движения, но на это уходит некоторое время (до 16 мин.).

В образовавшемся у нейтрона пограничном слое кольцевое движение замыкается полностью, поэтому нейтрон и воспринимается как электрически нейтральная частица. Но за счет этого пограничного слоя, в котором вязкость понижена, перераспределяется и тороидальное движение, которое ослабляется во внешнем пространстве. Практика это подтверждает, так как у протона магнитный момент составляет 2,79 ядерно го магнетона, а у нейтрона только 1,91 ядерно го магнетона.

Масса нейтрона, равная 1,67482-10-27 кг, больше, чем масса протона, равная 1,67252-10-27 кг на величину 0,0023-10-27 кг. Это легко объяснятся тем, что эфир, входящий в состав пограничного слоя нейтрона, учитывается в его массе, в то время как эфир, движущийся вокруг протона, движение которого воспринимается как электромагнитное поле протона, в массе протона не учитывается.

6.5. Модели атомных ядер

6.5.1. Основные эфиродинамические принципы структурной организации атомных ядер

Существуют разнообразные модели атомных ядер [9-23], описывающие более или менее точно параметры ядер, в том числе энергии взаимодействия нуклонов, значения магнитного момента и т.п. Недостатками этих моделей являются их феноменологичность, фактическое отсутствие структурных представлений, а также представлений о природе внутриядерных взаимодействий.

Эфиродинамические представления позволяют найти структуру атомных ядер и понять природу ядерных сил. При этом известные значения энергии взаимодействия нуклонов Е, значения спина I п ,